Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Overview

Phoenix-Drone-Simulation

An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor:

  • Can be used for Reinforcement Learning (check out the examples!) or Model Predictive Control
  • We used this repository for sim-to-real transfer experiments (see publication [1] below)
  • The implemented dynamics model is based on the Bitcraze's Crazyflie 2.1 nano-quadrotor
Circle Task TakeOff
Circle TakeOff

The following tasks are currently available to fly the little drone:

  • Hover
  • Circle
  • Take-off (implemented but not yet working properly: reward function must be tuned!)
  • Reach (not yet implemented)

Overview of Environments

Task Controller Physics Observation Frequency Domain Randomization Aerodynamic effects Motor Dynamics
DroneHoverSimpleEnv-v0 Hover PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneHoverBulletEnv-v0 Hover PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneCircleSimpleEnv-v0 Circle PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneCircleBulletEnv-v0 Circle PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneTakeOffSimpleEnv-v0 Take-off PWM (100Hz) Simple 100 Hz 10% Ground-effect Instant force
DroneTakeOffBulletEnv-v0 Take-off PWM (100Hz) PyBullet 100 Hz 10% Ground-effect First-order

Installation and Requirements

Here are the (few) steps to follow to get our repository ready to run. Clone the repository and install the phoenix-drone-simulation package via pip. Note that everything after a $ is entered on a terminal, while everything after >>> is passed to a Python interpreter. Please, use the following three steps for installation:

$ git clone https://github.com/SvenGronauer/phoenix-drone-simulation
$ cd phoenix-drone-simulation/
$ pip install -e .

This package follows OpenAI's Gym Interface.

Note: if your default python is 2.7, in the following, replace pip with pip3 and python with python3

Supported Systems

We tested this package under Ubuntu 20.04 and Mac OS X 11.2 running Python 3.7 and 3.8. Other system might work as well but have not been tested yet. Note that PyBullet supports Windows as platform only experimentally!.

Dependencies

Bullet-Safety-Gym heavily depends on two packages:

Getting Started

After the successful installation of the repository, the Bullet-Safety-Gym environments can be simply instantiated via gym.make. See:

>>> import gym
>>> import phoenix_drone_simulation
>>> env = gym.make('DroneHoverBulletEnv-v0')

The functional interface follows the API of the OpenAI Gym (Brockman et al., 2016) that consists of the three following important functions:

>>> observation = env.reset()
>>> random_action = env.action_space.sample()  # usually the action is determined by a policy
>>> next_observation, reward, done, info = env.step(random_action)

A minimal code for visualizing a uniformly random policy in a GUI, can be seen in:

import gym
import time
import phoenix_drone_simulation

env = gym.make('DroneHoverBulletEnv-v0')

while True:
    done = False
    env.render()  # make GUI of PyBullet appear
    x = env.reset()
    while not done:
        random_action = env.action_space.sample()
        x, reward, done, info = env.step(random_action)
        time.sleep(0.05)

Note that only calling the render function before the reset function triggers visuals.

Training Policies

To train an agent with the PPO algorithm call:

$ python -m phoenix_drone_simulation.train --alg ppo --env DroneHoverBulletEnv-v0

This works with basically every environment that is compatible with the OpenAI Gym interface:

$ python -m phoenix_drone_simulation.train --alg ppo --env CartPole-v0

After an RL model has been trained and its checkpoint has been saved on your disk, you can visualize the checkpoint:

$ python -m phoenix_drone_simulation.play --ckpt PATH_TO_CKPT

where PATH_TO_CKPT is the path to the checkpoint, e.g. /var/tmp/sven/DroneHoverSimpleEnv-v0/trpo/2021-11-16__16-08-09/seed_51544

Examples

generate_trajectories.py

See the generate_trajectories.py script which shows how to generate data batches of size N. Use generate_trajectories.py --play to visualize the policy in PyBullet simulator.

train_drone_hover.py

Use Reinforcement Learning (RL) to learn the drone holding its position at (0, 0, 1). This canonical example relies on the RL-safety-Algorithms repository which is a very strong framework for parallel RL algorithm training.

transfer_learning_drone_hover.py

Shows a transfer learning approach. We first train a PPO model in the source domain DroneHoverSimpleEnv-v0 and then re-train the model on a more complex target domain DroneHoverBulletEnv-v0. Note that the DroneHoverBulletEnv-v0 environment builds upon an accurate motor modelling of the CrazyFlie drone and includes a motor dead time as well as a motor lag.

Tools

  • convert.py @ Sven Gronauer

A function used by Sven to extract the policy networks from his trained Actor Critic module and convert the model to a json file format.

Version History and Changes

Version Changes Date
v1.0 Public Release: Simulation parameters as proposed in Publication [1] 19.04.2022
v0.2 Add: accurate motor dynamic model and first real-world transfer insights 21.09.2021
v0.1 Re-factor: of repository (only Hover task yet implemented) 18.05.2021
v0.0 Fork: from Gym-PyBullet-Drones Repo 01.12.2020

Publications

  1. Using Simulation Optimization to Improve Zero-shot Policy Transfer of Quadrotors

    Sven Gronauer, Matthias Kissel, Luca Sacchetto, Mathias Korte, Klaus Diepold

    https://arxiv.org/abs/2201.01369


Lastly, we want to thank:

  • Jacopo Panerati and his team for contributing the Gym-PyBullet-Drones Repo which was the staring point for this repository.

  • Artem Molchanov and collaborators for their hints about the CrazyFlie Firmware and the motor dynamics in their paper "Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Policies to Multiple Quadrotors"

  • Jakob Foerster for this Bachelor Thesis and his insights about the CrazyFlie's parameter values


This repository has been develepod at the

Chair of Data Processing
TUM School of Computation, Information and Technology
Technical University of Munich

Owner
Sven Gronauer
Electrical Engineering & Information Technology
Sven Gronauer
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023