Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Overview

Phoenix-Drone-Simulation

An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor:

  • Can be used for Reinforcement Learning (check out the examples!) or Model Predictive Control
  • We used this repository for sim-to-real transfer experiments (see publication [1] below)
  • The implemented dynamics model is based on the Bitcraze's Crazyflie 2.1 nano-quadrotor
Circle Task TakeOff
Circle TakeOff

The following tasks are currently available to fly the little drone:

  • Hover
  • Circle
  • Take-off (implemented but not yet working properly: reward function must be tuned!)
  • Reach (not yet implemented)

Overview of Environments

Task Controller Physics Observation Frequency Domain Randomization Aerodynamic effects Motor Dynamics
DroneHoverSimpleEnv-v0 Hover PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneHoverBulletEnv-v0 Hover PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneCircleSimpleEnv-v0 Circle PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneCircleBulletEnv-v0 Circle PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneTakeOffSimpleEnv-v0 Take-off PWM (100Hz) Simple 100 Hz 10% Ground-effect Instant force
DroneTakeOffBulletEnv-v0 Take-off PWM (100Hz) PyBullet 100 Hz 10% Ground-effect First-order

Installation and Requirements

Here are the (few) steps to follow to get our repository ready to run. Clone the repository and install the phoenix-drone-simulation package via pip. Note that everything after a $ is entered on a terminal, while everything after >>> is passed to a Python interpreter. Please, use the following three steps for installation:

$ git clone https://github.com/SvenGronauer/phoenix-drone-simulation
$ cd phoenix-drone-simulation/
$ pip install -e .

This package follows OpenAI's Gym Interface.

Note: if your default python is 2.7, in the following, replace pip with pip3 and python with python3

Supported Systems

We tested this package under Ubuntu 20.04 and Mac OS X 11.2 running Python 3.7 and 3.8. Other system might work as well but have not been tested yet. Note that PyBullet supports Windows as platform only experimentally!.

Dependencies

Bullet-Safety-Gym heavily depends on two packages:

Getting Started

After the successful installation of the repository, the Bullet-Safety-Gym environments can be simply instantiated via gym.make. See:

>>> import gym
>>> import phoenix_drone_simulation
>>> env = gym.make('DroneHoverBulletEnv-v0')

The functional interface follows the API of the OpenAI Gym (Brockman et al., 2016) that consists of the three following important functions:

>>> observation = env.reset()
>>> random_action = env.action_space.sample()  # usually the action is determined by a policy
>>> next_observation, reward, done, info = env.step(random_action)

A minimal code for visualizing a uniformly random policy in a GUI, can be seen in:

import gym
import time
import phoenix_drone_simulation

env = gym.make('DroneHoverBulletEnv-v0')

while True:
    done = False
    env.render()  # make GUI of PyBullet appear
    x = env.reset()
    while not done:
        random_action = env.action_space.sample()
        x, reward, done, info = env.step(random_action)
        time.sleep(0.05)

Note that only calling the render function before the reset function triggers visuals.

Training Policies

To train an agent with the PPO algorithm call:

$ python -m phoenix_drone_simulation.train --alg ppo --env DroneHoverBulletEnv-v0

This works with basically every environment that is compatible with the OpenAI Gym interface:

$ python -m phoenix_drone_simulation.train --alg ppo --env CartPole-v0

After an RL model has been trained and its checkpoint has been saved on your disk, you can visualize the checkpoint:

$ python -m phoenix_drone_simulation.play --ckpt PATH_TO_CKPT

where PATH_TO_CKPT is the path to the checkpoint, e.g. /var/tmp/sven/DroneHoverSimpleEnv-v0/trpo/2021-11-16__16-08-09/seed_51544

Examples

generate_trajectories.py

See the generate_trajectories.py script which shows how to generate data batches of size N. Use generate_trajectories.py --play to visualize the policy in PyBullet simulator.

train_drone_hover.py

Use Reinforcement Learning (RL) to learn the drone holding its position at (0, 0, 1). This canonical example relies on the RL-safety-Algorithms repository which is a very strong framework for parallel RL algorithm training.

transfer_learning_drone_hover.py

Shows a transfer learning approach. We first train a PPO model in the source domain DroneHoverSimpleEnv-v0 and then re-train the model on a more complex target domain DroneHoverBulletEnv-v0. Note that the DroneHoverBulletEnv-v0 environment builds upon an accurate motor modelling of the CrazyFlie drone and includes a motor dead time as well as a motor lag.

Tools

  • convert.py @ Sven Gronauer

A function used by Sven to extract the policy networks from his trained Actor Critic module and convert the model to a json file format.

Version History and Changes

Version Changes Date
v1.0 Public Release: Simulation parameters as proposed in Publication [1] 19.04.2022
v0.2 Add: accurate motor dynamic model and first real-world transfer insights 21.09.2021
v0.1 Re-factor: of repository (only Hover task yet implemented) 18.05.2021
v0.0 Fork: from Gym-PyBullet-Drones Repo 01.12.2020

Publications

  1. Using Simulation Optimization to Improve Zero-shot Policy Transfer of Quadrotors

    Sven Gronauer, Matthias Kissel, Luca Sacchetto, Mathias Korte, Klaus Diepold

    https://arxiv.org/abs/2201.01369


Lastly, we want to thank:

  • Jacopo Panerati and his team for contributing the Gym-PyBullet-Drones Repo which was the staring point for this repository.

  • Artem Molchanov and collaborators for their hints about the CrazyFlie Firmware and the motor dynamics in their paper "Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Policies to Multiple Quadrotors"

  • Jakob Foerster for this Bachelor Thesis and his insights about the CrazyFlie's parameter values


This repository has been develepod at the

Chair of Data Processing
TUM School of Computation, Information and Technology
Technical University of Munich

Owner
Sven Gronauer
Electrical Engineering & Information Technology
Sven Gronauer
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023