Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Overview

Robust Object Detection via Instance-Level Temporal Cycle Confusion

This repo contains the implementation of the ICCV 2021 paper, Robust Object Detection via Instance-Level Temporal Cycle Confusion.

Screenshot

Building reliable object detectors that are robust to domain shifts, such as various changes in context, viewpoint, and object appearances, is critical for real world applications. In this work, we study the effectiveness of auxiliary self-supervised tasks to improve out-of-distribution generalization of object detectors. Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level cycle confusion (CycConf), which operates on the region features of the object detectors. For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision. CycConf encourages the object detector to explore invariant structures across instances under various motion, which leads to improved model robustness in unseen domains at test time. We observe consistent out-of-domain performance improvements when training object detectors in tandem with self-supervised tasks on various domain adaptation benchmarks with static images (Cityscapes, Foggy Cityscapes, Sim10K) and large-scale video datasets (BDD100K and Waymo open data).

Installation

Environment

  • CUDA 10.2
  • Python >= 3.7
  • Pytorch >= 1.6
  • THe Detectron2 version matches Pytorch and CUDA versions.

Dependencies

  1. Create a virtual env.
  • python3 -m pip install --user virtualenv
  • python3 -m venv cyc-conf
  • source cyc-conf/bin/activate
  1. Install dependencies.
  • pip install -r requirements.txt

  • Install Pytorch 1.9

pip3 install torch torchvision

Check out the previous Pytorch versions here.

  • Install Detectron2 Build Detectron2 from Source (gcc & g++ >= 5.4) python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'

Or, you can install Pre-built detectron2 (example for CUDA 10.2, Pytorch 1.9)

python -m pip install detectron2 -f \ https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html

More details can be found here.

Data Preparation

BDD100K

  1. Download the BDD100K MOT 2020 dataset (MOT 2020 Images and MOT 2020 Labels) and the detection labels (Detection 2020 Labels) here and the detailed description is available here. Put the BDD100K data under datasets/ in this repo. After downloading the data, the folder structure should be like below:
├── datasets
│   ├── bdd100k
│   │   ├── images
│   │   │    └── track
│   │   │        ├── train
│   │   │        ├── val
│   │   │        └── test
│   │   └── labels
│   │        ├── box_track_20
│   │        │   ├── train
│   │        │   └── val
│   │        └── det_20
│   │            ├── det_train.json
│   │            └── det_val.json
│   ├── waymo

Convert the labels of the MOT 2020 data (train & val sets) into COCO format by running:

python3 datasets/bdd100k2coco.py -i datasets/bdd100k/labels/box_track_20/val/ -o datasets/bdd100k/labels/track/bdd100k_mot_val_coco.json -m track
python3 datasets/bdd100k2coco.py -i datasets/bdd100k/labels/box_track_20/train/ -o datasets/bdd100k/labels/track/bdd100k_mot_train_coco.json -m track
  1. Split the original videos into different domains (time of day). Run the following command:
python3 -m datasets.domain_splits_bdd100k

This script will first extract the domain attributes from the BDD100K detection set and then map them to the tracking set sequences. After the processing steps, you would see two additional folders domain_splits and per_seq under the datasets/bdd100k/labels/box_track_20. The domain splits of all attributes in BDD100K detection set can be found at datasets/bdd100k/labels/domain_splits.

Waymo

  1. Download the Waymo dataset here. Put the Waymo raw data under datasets/ in this repo. After downloading the data, the folder structure should be like below:
├── datasets
│   ├── bdd100k
│   ├── waymo
│   │   └── raw

Convert the raw TFRecord data files into COCO format by running:

python3 -m datasets.waymo2coco

Note that this script takes a long time to run, be prepared to keep it running for over a day.

  1. Convert the BDD100K dataset labels into 3 classes (originally 8). This needs to be done in order to match the 3 classes of the Waymo dataset. Run the following command:
python3 -m datasets.convert_bdd_3cls

Get Started

For joint training,

python3 -m tools.train_net --config-file [config_file] --num-gpus 8

For evaluation,

python3 -m tools.train_net --config-file [config_file] --num-gpus [num] --eval-only

This command will load the latest checkpoint in the folder. If you want to specify a different checkpoint or evaluate the pretrained checkpoints, you can run

python3 -m tools.train_net --config-file [config_file] --num-gpus [num] --eval-only MODEL.WEIGHTS [PATH_TO_CHECKPOINT]

Benchmark Results

Dataset Statistics

Dataset Split Seq frames/seq. boxes classes
BDD100K Daytime train 757 204 1.82M 8
val 108 204 287K 8
BDD100K Night train 564 204 895K 8
val 71 204 137K 8
Waymo Open Data train 798 199 3.64M 3
val 202 199 886K 3

Out of Domain Evaluation

BDD100K Daytime to Night. The base detector is Faster R-CNN with ResNet-50.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 17.84 31.35 17.68 4.92 16.15 35.56 link link
+ Rotation 18.58 32.95 18.15 5.16 16.93 36.00 link link
+ Jigsaw 17.47 31.22 16.81 5.08 15.80 33.84 link link
+ Cycle Consistency 18.35 32.44 18.07 5.04 17.07 34.85 link link
+ Cycle Confusion 19.09 33.58 19.14 5.70 17.68 35.86 link link

BDD100K Night to Daytime.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 19.14 33.04 19.16 5.38 21.42 40.34 link link
+ Rotation 19.07 33.25 18.83 5.53 21.32 40.06 link link
+ Jigsaw 19.22 33.87 18.71 5.67 22.35 38.57 link link
+ Cycle Consistency 18.89 33.50 18.31 5.82 21.01 39.13 link link
+ Cycle Confusion 19.57 34.34 19.26 6.06 22.55 38.95 link link

Waymo Front Left to BDD100K Night.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 10.07 19.62 9.05 2.67 10.81 18.62 link link
+ Rotation 11.34 23.12 9.65 3.53 11.73 21.60 link link
+ Jigsaw 9.86 19.93 8.40 2.77 10.53 18.82 link link
+ Cycle Consistency 11.55 23.44 10.00 2.96 12.19 21.99 link link
+ Cycle Confusion 12.27 26.01 10.24 3.44 12.22 23.56 link link

Waymo Front Right to BDD100K Night.

Model AP AP50 AP75 APs APm APl Config Checkpoint
Faster R-CNN 8.65 17.26 7.49 1.76 8.29 19.99 link link
+ Rotation 9.25 18.48 8.08 1.85 8.71 21.08 link link
+ Jigsaw 8.34 16.58 7.26 1.61 8.01 18.09 link link
+ Cycle Consistency 9.11 17.92 7.98 1.78 9.36 19.18 link link
+ Cycle Confusion 9.99 20.58 8.30 2.18 10.25 20.54 link link

Citation

If you find this repository useful for your publications, please consider citing our paper.

@article{wang2021robust,
  title={Robust Object Detection via Instance-Level Temporal Cycle Confusion},
  author={Wang, Xin and Huang, Thomas E and Liu, Benlin and Yu, Fisher and Wang, Xiaolong and Gonzalez, Joseph E and Darrell, Trevor},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}
Owner
Xin Wang
Researcher from Microsoft Research. Prev. Ph.D. student at UC Berkeley.
Xin Wang
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021