Chess reinforcement learning by AlphaGo Zero methods.

Overview

Binder Demo Notebook

About

Chess reinforcement learning by AlphaGo Zero methods.

This project is based on these main resources:

  1. DeepMind's Oct 19th publication: Mastering the Game of Go without Human Knowledge.
  2. The great Reversi development of the DeepMind ideas that @mokemokechicken did in his repo: https://github.com/mokemokechicken/reversi-alpha-zero
  3. DeepMind just released a new version of AlphaGo Zero (named now AlphaZero) where they master chess from scratch: https://arxiv.org/pdf/1712.01815.pdf. In fact, in chess AlphaZero outperformed Stockfish after just 4 hours (300k steps) Wow!

See the wiki for more details.

Note

I'm the creator of this repo. I (and some others collaborators did our best: https://github.com/Zeta36/chess-alpha-zero/graphs/contributors) but we found the self-play is too much costed for an only machine. Supervised learning worked fine but we never try the self-play by itself.

Anyway I want to mention we have moved to a new repo where lot of people is working in a distributed version of AZ for chess (MCTS in C++): https://github.com/glinscott/leela-chess

Project is almost done and everybody will be able to participate just by executing a pre-compiled windows (or Linux) application. A really great job and effort has been done is this project and I'm pretty sure we'll be able to simulate the DeepMind results in not too long time of distributed cooperation.

So, I ask everybody that wish to see a UCI engine running a neural network to beat Stockfish go into that repo and help with his machine power.

Environment

  • Python 3.6.3
  • tensorflow-gpu: 1.3.0
  • Keras: 2.0.8

New results (after a great number of modifications due to @Akababa)

Using supervised learning on about 10k games, I trained a model (7 residual blocks of 256 filters) to a guesstimate of 1200 elo with 1200 sims/move. One of the strengths of MCTS is it scales quite well with computing power.

Here you can see an example where I (black) played against the model in the repo (white):

img

Here you can see an example of a game where I (white, ~2000 elo) played against the model in this repo (black):

img

First "good" results

Using the new supervised learning step I created, I've been able to train a model to the point that seems to be learning the openings of chess. Also it seems the model starts to avoid losing naively pieces.

Here you can see an example of a game played for me against this model (AI plays black):

partida1

Here we have a game trained by @bame55 (AI plays white):

partida3

This model plays in this way after only 5 epoch iterations of the 'opt' worker, the 'eval' worker changed 4 times the best model (4 of 5). At this moment the loss of the 'opt' worker is 5.1 (and still seems to be converging very well).

Modules

Supervised Learning

I've done a supervised learning new pipeline step (to use those human games files "PGN" we can find in internet as play-data generator). This SL step was also used in the first and original version of AlphaGo and maybe chess is a some complex game that we have to pre-train first the policy model before starting the self-play process (i.e., maybe chess is too much complicated for a self training alone).

To use the new SL process is as simple as running in the beginning instead of the worker "self" the new worker "sl". Once the model converges enough with SL play-data we just stop the worker "sl" and start the worker "self" so the model will start improving now due to self-play data.

python src/chess_zero/run.py sl

If you want to use this new SL step you will have to download big PGN files (chess files) and paste them into the data/play_data folder (FICS is a good source of data). You can also use the SCID program to filter by headers like player ELO, game result and more.

To avoid overfitting, I recommend using data sets of at least 3000 games and running at most 3-4 epochs.

Reinforcement Learning

This AlphaGo Zero implementation consists of three workers: self, opt and eval.

  • self is Self-Play to generate training data by self-play using BestModel.
  • opt is Trainer to train model, and generate next-generation models.
  • eval is Evaluator to evaluate whether the next-generation model is better than BestModel. If better, replace BestModel.

Distributed Training

Now it's possible to train the model in a distributed way. The only thing needed is to use the new parameter:

  • --type distributed: use mini config for testing, (see src/chess_zero/configs/distributed.py)

So, in order to contribute to the distributed team you just need to run the three workers locally like this:

python src/chess_zero/run.py self --type distributed (or python src/chess_zero/run.py sl --type distributed)
python src/chess_zero/run.py opt --type distributed
python src/chess_zero/run.py eval --type distributed

GUI

  • uci launches the Universal Chess Interface, for use in a GUI.

To set up ChessZero with a GUI, point it to C0uci.bat (or rename to .sh). For example, this is screenshot of the random model using Arena's self-play feature: capture

Data

  • data/model/model_best_*: BestModel.
  • data/model/next_generation/*: next-generation models.
  • data/play_data/play_*.json: generated training data.
  • logs/main.log: log file.

If you want to train the model from the beginning, delete the above directories.

How to use

Setup

install libraries

pip install -r requirements.txt

If you want to use GPU, follow these instructions to install with pip3.

Make sure Keras is using Tensorflow and you have Python 3.6.3+. Depending on your environment, you may have to run python3/pip3 instead of python/pip.

Basic Usage

For training model, execute Self-Play, Trainer and Evaluator.

Note: Make sure you are running the scripts from the top-level directory of this repo, i.e. python src/chess_zero/run.py opt, not python run.py opt.

Self-Play

python src/chess_zero/run.py self

When executed, Self-Play will start using BestModel. If the BestModel does not exist, new random model will be created and become BestModel.

options

  • --new: create new BestModel
  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)

Trainer

python src/chess_zero/run.py opt

When executed, Training will start. A base model will be loaded from latest saved next-generation model. If not existed, BestModel is used. Trained model will be saved every epoch.

options

  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)
  • --total-step: specify total step(mini-batch) numbers. The total step affects learning rate of training.

Evaluator

python src/chess_zero/run.py eval

When executed, Evaluation will start. It evaluates BestModel and the latest next-generation model by playing about 200 games. If next-generation model wins, it becomes BestModel.

options

  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)

Tips and Memory

GPU Memory

Usually the lack of memory cause warnings, not error. If error happens, try to change vram_frac in src/configs/mini.py,

self.vram_frac = 1.0

Smaller batch_size will reduce memory usage of opt. Try to change TrainerConfig#batch_size in MiniConfig.

Owner
Samuel
Samuel
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021