Chess reinforcement learning by AlphaGo Zero methods.

Overview

Binder Demo Notebook

About

Chess reinforcement learning by AlphaGo Zero methods.

This project is based on these main resources:

  1. DeepMind's Oct 19th publication: Mastering the Game of Go without Human Knowledge.
  2. The great Reversi development of the DeepMind ideas that @mokemokechicken did in his repo: https://github.com/mokemokechicken/reversi-alpha-zero
  3. DeepMind just released a new version of AlphaGo Zero (named now AlphaZero) where they master chess from scratch: https://arxiv.org/pdf/1712.01815.pdf. In fact, in chess AlphaZero outperformed Stockfish after just 4 hours (300k steps) Wow!

See the wiki for more details.

Note

I'm the creator of this repo. I (and some others collaborators did our best: https://github.com/Zeta36/chess-alpha-zero/graphs/contributors) but we found the self-play is too much costed for an only machine. Supervised learning worked fine but we never try the self-play by itself.

Anyway I want to mention we have moved to a new repo where lot of people is working in a distributed version of AZ for chess (MCTS in C++): https://github.com/glinscott/leela-chess

Project is almost done and everybody will be able to participate just by executing a pre-compiled windows (or Linux) application. A really great job and effort has been done is this project and I'm pretty sure we'll be able to simulate the DeepMind results in not too long time of distributed cooperation.

So, I ask everybody that wish to see a UCI engine running a neural network to beat Stockfish go into that repo and help with his machine power.

Environment

  • Python 3.6.3
  • tensorflow-gpu: 1.3.0
  • Keras: 2.0.8

New results (after a great number of modifications due to @Akababa)

Using supervised learning on about 10k games, I trained a model (7 residual blocks of 256 filters) to a guesstimate of 1200 elo with 1200 sims/move. One of the strengths of MCTS is it scales quite well with computing power.

Here you can see an example where I (black) played against the model in the repo (white):

img

Here you can see an example of a game where I (white, ~2000 elo) played against the model in this repo (black):

img

First "good" results

Using the new supervised learning step I created, I've been able to train a model to the point that seems to be learning the openings of chess. Also it seems the model starts to avoid losing naively pieces.

Here you can see an example of a game played for me against this model (AI plays black):

partida1

Here we have a game trained by @bame55 (AI plays white):

partida3

This model plays in this way after only 5 epoch iterations of the 'opt' worker, the 'eval' worker changed 4 times the best model (4 of 5). At this moment the loss of the 'opt' worker is 5.1 (and still seems to be converging very well).

Modules

Supervised Learning

I've done a supervised learning new pipeline step (to use those human games files "PGN" we can find in internet as play-data generator). This SL step was also used in the first and original version of AlphaGo and maybe chess is a some complex game that we have to pre-train first the policy model before starting the self-play process (i.e., maybe chess is too much complicated for a self training alone).

To use the new SL process is as simple as running in the beginning instead of the worker "self" the new worker "sl". Once the model converges enough with SL play-data we just stop the worker "sl" and start the worker "self" so the model will start improving now due to self-play data.

python src/chess_zero/run.py sl

If you want to use this new SL step you will have to download big PGN files (chess files) and paste them into the data/play_data folder (FICS is a good source of data). You can also use the SCID program to filter by headers like player ELO, game result and more.

To avoid overfitting, I recommend using data sets of at least 3000 games and running at most 3-4 epochs.

Reinforcement Learning

This AlphaGo Zero implementation consists of three workers: self, opt and eval.

  • self is Self-Play to generate training data by self-play using BestModel.
  • opt is Trainer to train model, and generate next-generation models.
  • eval is Evaluator to evaluate whether the next-generation model is better than BestModel. If better, replace BestModel.

Distributed Training

Now it's possible to train the model in a distributed way. The only thing needed is to use the new parameter:

  • --type distributed: use mini config for testing, (see src/chess_zero/configs/distributed.py)

So, in order to contribute to the distributed team you just need to run the three workers locally like this:

python src/chess_zero/run.py self --type distributed (or python src/chess_zero/run.py sl --type distributed)
python src/chess_zero/run.py opt --type distributed
python src/chess_zero/run.py eval --type distributed

GUI

  • uci launches the Universal Chess Interface, for use in a GUI.

To set up ChessZero with a GUI, point it to C0uci.bat (or rename to .sh). For example, this is screenshot of the random model using Arena's self-play feature: capture

Data

  • data/model/model_best_*: BestModel.
  • data/model/next_generation/*: next-generation models.
  • data/play_data/play_*.json: generated training data.
  • logs/main.log: log file.

If you want to train the model from the beginning, delete the above directories.

How to use

Setup

install libraries

pip install -r requirements.txt

If you want to use GPU, follow these instructions to install with pip3.

Make sure Keras is using Tensorflow and you have Python 3.6.3+. Depending on your environment, you may have to run python3/pip3 instead of python/pip.

Basic Usage

For training model, execute Self-Play, Trainer and Evaluator.

Note: Make sure you are running the scripts from the top-level directory of this repo, i.e. python src/chess_zero/run.py opt, not python run.py opt.

Self-Play

python src/chess_zero/run.py self

When executed, Self-Play will start using BestModel. If the BestModel does not exist, new random model will be created and become BestModel.

options

  • --new: create new BestModel
  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)

Trainer

python src/chess_zero/run.py opt

When executed, Training will start. A base model will be loaded from latest saved next-generation model. If not existed, BestModel is used. Trained model will be saved every epoch.

options

  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)
  • --total-step: specify total step(mini-batch) numbers. The total step affects learning rate of training.

Evaluator

python src/chess_zero/run.py eval

When executed, Evaluation will start. It evaluates BestModel and the latest next-generation model by playing about 200 games. If next-generation model wins, it becomes BestModel.

options

  • --type mini: use mini config for testing, (see src/chess_zero/configs/mini.py)

Tips and Memory

GPU Memory

Usually the lack of memory cause warnings, not error. If error happens, try to change vram_frac in src/configs/mini.py,

self.vram_frac = 1.0

Smaller batch_size will reduce memory usage of opt. Try to change TrainerConfig#batch_size in MiniConfig.

Owner
Samuel
Samuel
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022