One Million Scenes for Autonomous Driving

Overview

ONCE Benchmark

This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset.

The code is mainly based on OpenPCDet.

Introduction

We provide the dataset API and some reproduced models on the ONCE dataset.

Installation

The repo is based on OpenPCDet. If you have already installed OpenPCDet (version >= v0.3.0), you can skip this part and use the existing environment, but remember to re-compile CUDA operators by

python setup.py develop
cd pcdet/ops/dcn
python setup.py develop

If you haven't installed OpenPCDet, please refer to INSTALL.md for the installation.

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Benchmark

Please refer to this page for detailed benchmark results. We cannot release the training checkpoints, but it's easy to reproduce the results with provided configurations.

Detection Models

We provide 1 fusion-based and 5 point cloud based 3D detectors. The training configurations are at tools/cfgs/once_models/sup_models/*.yaml

For PointPainting, you have to first produce segmentation results yourself. We used HRNet trained on CityScapes to generate segmentation masks.

Reproduced results on the validation split (trained on the training split):

Method Vehicle Pedestrian Cyclist mAP
PointRCNN 52.09 4.28 29.84 28.74
PointPillars 68.57 17.63 46.81 44.34
SECOND 71.19 26.44 58.04 51.89
PV-RCNN 77.77 23.50 59.37 53.55
CenterPoints 66.79 49.90 63.45 60.05
PointPainting 66.17 44.84 62.34 57.78

Semi-supervised Learning

We provide 5 semi-supervised methods based on the SECOND detector. The training configurations are at tools/cfgs/once_models/semi_learning_models/*.yaml

It is worth noting that all the methods are implemented by ourselves, and some are modified to attain better performance. Thus our implementations may be quite different from the original versions.

Reproduced results on the validation split (semi-supervised learning on the 100k raw_small subset):

Method Vehicle Pedestrian Cyclist mAP
baseline (SECOND) 71.19 26.44 58.04 51.89
Pseudo Label 72.80 25.50 55.37 51.22
Noisy Student 73.69 28.81 54.67 52.39
Mean Teacher 74.46 30.54 61.02 55.34
SESS 73.33 27.31 59.52 53.39
3DIoUMatch 73.81 30.86 56.77 53.81

Unsupervised Domain Adaptation

This part of the codes is based on ST3D. Please copy the configurations at tools/cfgs/once_models/uda_models/* and tools/cfgs/dataset_configs/da_once_dataset.yaml, as well as the dataset file pcdet/datasets/once/once_target_dataset.py to the ST3D repo. The results can be easily reproduced following their instructions.

Task Waymo_to_ONCE nuScenes_to_ONCE ONCE_to_KITTI
Method AP_BEV/AP_3D AP_BEV/AP_3D AP_BEV/AP_3D
Source Only 65.55/32.88 46.85/23.74 42.01/12.11
SN 67.97/38.25 62.47/29.53 48.12/21.12
ST3D 68.05/48.34 42.53/17.52 86.89/41.42
Oracle 89.00/77.50 89.00/77.50 83.29/73.45

Citation

If you find this project useful in your research, please consider cite:

@article{mao2021one,
  title={One Million Scenes for Autonomous Driving: ONCE Dataset},
  author={Mao, Jiageng and Niu, Minzhe and Jiang, Chenhan and Liang, Hanxue and Liang, Xiaodan and Li, Yamin and Ye, Chaoqiang and Zhang, Wei and Li, Zhenguo and Yu, Jie and others},
  journal={arXiv preprint arXiv:2106.11037},
  year={2021}
}
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023