A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

Overview

sam.pytorch

A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementation .

Requirements

  • Python>=3.8
  • PyTorch>=1.7.1

To run the example, you further need

  • homura by pip install -U homura-core==2020.12.0
  • chika by pip install -U chika

Example

python cifar10.py [--optim.name {sam,sgd}] [--model {renst20, wrn28_2}] [--optim.rho 0.05]

Results: Test Accuracy (CIFAR-10)

Model SAM SGD
ResNet-20 93.5 93.2
WRN28-2 95.8 95.4
ResNeXT29 96.4 95.8

SAM needs double forward passes per each update, thus training with SAM is slower than training with SGD. In case of ResNet-20 training, 80 mins vs 50 mins on my environment. Additional options --use_amp --jit_model may slightly accelerates the training.

Usage

SAMSGD can be used as a drop-in replacement of PyTorch optimizers with closures. Also, it is compatible with lr_scheduler and has state_dict and load_state_dict.

from sam import SAMSGD

optimizer = SAMSGD(model.parameters(), lr=1e-1, rho=0.05)

for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_f(output, target)
        loss.backward()
        return loss


    loss = optimizer.step(closure)

Citation

@ARTICLE{2020arXiv201001412F,
    author = {{Foret}, Pierre and {Kleiner}, Ariel and {Mobahi}, Hossein and {Neyshabur}, Behnam},
    title = "{Sharpness-Aware Minimization for Efficiently Improving Generalization}",
    year = 2020,
    eid = {arXiv:2010.01412},
    eprint = {2010.01412},
}

@software{sampytorch
    author = {Ryuichiro Hataya},
    titile = {sam.pytorch},
    url    = {https://github.com/moskomule/sam.pytorch},
    year   = {2020}
}
Owner
Ryuichiro Hataya
PhD student at UTokyo and RA at RIKEN AIP / focusing on DL and ML
Ryuichiro Hataya
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022