Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

Related tags

Deep Learningboombox
Overview

The Boombox: Visual Reconstruction from Acoustic Vibrations

Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick
Columbia University

Project Website | Video | Paper

Overview

This repo contains the PyTorch implementation for paper "The Boombox: Visual Reconstruction from Acoustic Vibrations".

teaser

Content

Installation

Our code has been tested on Ubuntu 18.04 with CUDA 11.0. Create a python virtual environment and install the dependencies.

virtualenv -p /usr/bin/python3.6 env-boombox
source env-boombox/bin/activate
cd boombox
pip install -r requirements.txt

Data Preparation

Run the following commands to download the dataset (2.0G).

cd boombox
wget https://boombox.cs.columbia.edu/dataset/data.zip
unzip data.zip
rm -rf data.zip

After this step, you should see a folder named as data, and video and audio data are in cube, small_cuboid and large_cuboid subfolders.

About Configs and Logs

Before training and evaluation, we first introduce the configuration and logging structure.

  1. Configs: all the specific parameters used for training and evaluation are indicated as individual config file. Overall, we have two training paradigms: single-shape and multiple-shape.

    For single-shape, we train and evaluate on each shape separately. Their config files are named with their own shape: cube, large_cuboid and small_cuboid. For multiple-shape, we mix all the shapes together and perform training and evaluation while the shape is not known a priori. The config file folder is all.

    Within each config folder, we have config file for depth prediction and image prediction. The last digit in each folder refers to the random seed. For example, if you want to train our model with all the shapes mixed to output a RGB image with random seed 3, you should refer the parameters in:

    configs/all/2d_out_img_3
    
  2. Logs: both the training and evaluation results will be saved in the log folder for each experiment. The last digit in the logs folder indicates the random seed. Inside the logs folder, the structure and contents are:

    \logs_True_False_False_image_conv2d-encoder-decoder_True_{output_representation}_{seed}
        \lightning_logs
            \checkpoints               [saved checkpoint]
            \version_0                 [training stats]
            \version_1                 [testing stats]
        \pred_visualizations           [predicted and ground-truth images]
    

Training

Both training and evaluation are fast. We provide an example bash script for running our experiments in run_audio.sh. Specifically, to train our model on all shapes that outputs RGB image representations with random seed 1 and GPU 0, run the following command:

CUDA_VISIBLE_DEVICES=0 python main.py ./configs/all/2d_out_img_1/config.yaml;

Evaluation

Again, we provide an example bash script for running our experiments in run_audio.sh. Following the above example, to evaluate the trained model, run the following command:

CUDA_VISIBLE_DEVICES=0 python eval.py ./configs/all/2d_out_img_1/config.yaml ./logs_True_False_False_image_conv2d-encoder-decoder_True_pixel_1/lightning_logs/checkpoints;

License

This repository is released under the MIT license. See LICENSE for additional details.

Owner
Boyuan Chen
Ph.D. student in Computer Science at Columbia University Creative Machines Lab.
Boyuan Chen
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023