[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

Related tags

Deep LearningTTSR
Overview

TTSR

Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020.

Contents

Introduction

We proposed an approach named TTSR for RefSR task. Compared to SISR, RefSR has an extra high-resolution reference image whose textures can be utilized to help super-resolve low-resolution input.

Contribution

  1. We are one of the first to introduce the transformer architecture into image generation tasks. More specifically, we propose a texture transformer with four closely-related modules for image SR which achieves significant improvements over SOTA approaches.
  2. We propose a novel cross-scale feature integration module for image generation tasks which enables our approach to learn a more powerful feature representation by stacking multiple texture transformers.

Approach overview

Main results

Requirements and dependencies

  • python 3.7 (recommend to use Anaconda)
  • python packages: pip install opencv-python imageio
  • pytorch >= 1.1.0
  • torchvision >= 0.4.0

Model

Pre-trained models can be downloaded from onedrive, baidu cloud(0u6i), google drive.

  • TTSR-rec.pt: trained with only reconstruction loss
  • TTSR.pt: trained with all losses

Quick test

  1. Clone this github repo
git clone https://github.com/FuzhiYang/TTSR.git
cd TTSR
  1. Download pre-trained models and modify "model_path" in test.sh
  2. Run test
sh test.sh
  1. The results are in "save_dir" (default: ./test/demo/output)

Dataset prepare

  1. Download CUFED train set and CUFED test set
  2. Make dataset structure be:
  • CUFED
    • train
      • input
      • ref
    • test
      • CUFED5

Evaluation

  1. Prepare CUFED dataset and modify "dataset_dir" in eval.sh
  2. Download pre-trained models and modify "model_path" in eval.sh
  3. Run evaluation
sh eval.sh
  1. The results are in "save_dir" (default: ./eval/CUFED/TTSR)

Train

  1. Prepare CUFED dataset and modify "dataset_dir" in train.sh
  2. Run training
sh train.sh
  1. The training results are in "save_dir" (default: ./train/CUFED/TTSR)

Citation

@InProceedings{yang2020learning,
author = {Yang, Fuzhi and Yang, Huan and Fu, Jianlong and Lu, Hongtao and Guo, Baining},
title = {Learning Texture Transformer Network for Image Super-Resolution},
booktitle = {CVPR},
year = {2020},
month = {June}
}

Contact

If you meet any problems, please describe them in issues or contact:

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022