Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Overview

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm

Overview

Multi-band Spectro Radiomertric images are images comprising of several channels / bands which hold information on band energy in each pixel.
The most common multi band channels are the RGB (Red Green Blue) channels of the visible light spectrum.

The images used are LANDSAT 8 satellite images and each image consist of three bands, namely: Thermal Infrared, Red and Near infrared bands corresponding to band 10, band 4 and band 5 of LANDSAT 8 satellite imagery with wavelengths of 10.895µm, 0.655µm and 0.865µm respectively.

Each pixel in each bands of each image are used to compute three features namely: NDVI (Normalized Differential Vegetative Index), PV (Portion of Vegetation) and LST (Land Surface Temperature).

The K-means cluster algorithm is initialized and the "number of clusters" hyper-parameter is set to 60. The algorithm is then trained on the extracted features and forms 60 different clusters represented by each of the 60 centroids.

These centroids are stored in the "ouput" folder and will be futher studied to learn what NDVI, PV and LST combinations a geograhical location might need to have for the occurence and spread of wild fire to be highly probable.



Features

NDVI (Normalized Differential Vegetative Index):

The Normalized Differential Vegetative Index is a metric for checking the presence and health of a vegetation in a given region.
It is basically how much RED light energy from the visible light spectrum is absorbed by the plant and how much NIR (near-infrared rays) it emmits.
Healthy vegetation absorbs red-light energy to fuel photosynthesis and create chlorophyll, and a plant with more chlorophyll will reflect more near-infrared energy than an unhealthy plant.
The NDVI ranges from -1 to 1, -1 corresponds to a very unhealthy plant and 1 corresponds to a very healthy plant.

The mathematical expression for NDVI is:
NDVI = (NIR - RED) / (NIR + RED)


PV (Portion of Vegetation):

Portion of Vegetation is the ratio of the vertical projection area of vegetation on the ground to the total vegetation area

The mathematical expression for PV is:
PV = (NDVI - NDVImin) / (NDVImin + NDVImax)
NDVImin is the minimum NDVI value a pixel holds in a single image
NDVImin is the maximum NDVI value a pixel holds in a single image


LST (Land Surface Temperature):

Land Surface Temperature is the radiative temperature / intensity of the land surface

The mathematical expression for LST is:
LST = BT / ( 1 + ( ( kn * BT / p ) * np.log(E) ) )

BT is brighness Temperature in celcius and is mathematically expressed as:
BT = (K2 / np.log( ( K1 / TOA ) + 1 )) - 273.15
where K1 and K2 are landsat 8 constants 774.8853 and 1321.0789 respectively

TOA (Top of Atmosphere) Reflectance is a unitless measurement which provides the ratio of radiation reflected to the incident solar radiation on a given surface.
It is mathematically expressed as:
TOA = ML * TIR + Al
where ML and Al are landsat 8 constants 3.42E-4 and 0.1 respectively.

p is mathematically expressed as:
p = hc/A
where h, c and a are plank's constant, speed of light and boltzmann constant respectively

E is emissivity of the land surface and is mathematically expressed as:
( Ev * PV * Rv ) + ( Es * ( 1 - PV ) * Rs ) + C
where:
Ev (Vegitation Emissivity) of location = 0.986
Es (Soil Emissivity) of location = 0.973
C (topography factor) of location = 0.0001
Rv =(0.92762 + (0.07033PV))
Rs=(0.99782 + (0.05362
PV))



Dependencies

  • Rasterio
  • Numpy
  • Pandas
  • Sklearn
  • Pickle


Setup

clone the repository and download the 'requirement.txt' files, then open terminal in the working directory and type 'pip install -r requirements.txt' to install all the requirements for this project.
Owner
Chibueze Henry
A machine learning enthusiast and developer as well as a full-stack web developer
Chibueze Henry
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022