Automatically creates genre collections for your Plex media

Overview

Plex Auto Genres

Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre specific content

  1. Requirements
  2. Optimal Setup
  3. Getting Started
  4. Automating
  5. Docker Usage
  6. Troubleshooting
Movies example (with cover art set using --set-posters flag.)

Movie Collections

Anime example

Anime Collections

Requirements

  1. Python 3 - Instructions > Windows / Mac / Linux (Not required if using Docker)
  2. TMDB Api Key (Only required for non-anime libraries)

Optimal Setup

  1. Anime / Anime Movies are in their own library on your plex server. (Anime and Anime Movies can share the same library)
  2. Standard TV Shows are in their own library on your plex server.
  3. Standard Movies are in their own library on your plex server.
  4. Proper titles for your media, this makes it easier to find the media. (see https://support.plex.tv/articles/naming-and-organizing-your-tv-show-files/)

For this to work well your plex library should be sorted. Meaning standard and non-standard media should not be in the same Plex library. Anime is an example of non-standard media.

If your anime shows and standard tv shows are in the same library, you can still use this script just choose (standard) as the type. However, doing this could cause incorrect genres added to some or all of your anime media entries.

Here is an example of my plex library setup

Plex Library Example

Getting Started

  1. Read the Optimal Setup section above
  2. Run python3 -m pip install -r requirements.txt to install the required dependencies.
  3. Rename the .env.example file to .env
  4. Rename the config/config.json.example file to config/config.json. The default settings are probably fine.
  5. Edit the .env file and set your plex username, password, and server name. If you are generating collections for standard media (non anime) you will need to also obtain an TMDB Api Key (for movies and tv shows)
    Variable Authentication method Value
    PLEX_USERNAME Username and password Your Plex Username
    PLEX_PASSWORD Username and password Your Plex Password
    PLEX_SERVER_NAME Username and password Your Plex Server Name
    PLEX_BASE_URL Token Your Plex Server base URL
    PLEX_TOKEN Token Your Plex Token
    PLEX_COLLECTION_PREFIX (Optional) Prefix for the created Plex collections. For example, with a value of "*", a collection named "Adventure", the name would instead be "*Adventure".

    Default value : ""
    TMDB_API_KEY Your TMDB api key (not required for anime library tagging)
  6. Optional, If you want to update the poster art of your collections. See posters/README.md

You are now ready to run the script

usage: plex-auto-genres.py [-h] [--library LIBRARY] [--type {anime,standard-movie,standard-tv}] [--set-posters] [--sort] [--rate-anime]
                           [--create-rating-collections] [--query QUERY [QUERY ...]] [--dry] [--no-progress] [-f] [-y]

Adds genre tags (collections) to your Plex media.

optional arguments:
  -h, --help            show this help message and exit
  --library LIBRARY     The exact name of the Plex library to generate genre collections for.
  --type {anime,standard-movie,standard-tv}
                        The type of media contained in the library
  --set-posters         uploads posters located in posters/<type> of matching collections. Supports (.PNG)
  --sort                sort collections by adding the sort prefix character to the collection sort title
  --rate-anime          update media ratings with MyAnimeList ratings
  --create-rating-collections
                        sorts media into collections based off rating
  --query QUERY [QUERY ...]
                        Looks up genre and match info for the given media title.
  --dry                 Do not modify plex collections (debugging feature)
  --no-progress         Do not display the live updating progress bar
  -f, --force           Force proccess on all media (independently of proggress recorded in logs/).
  -y, --yes

examples: 
python plex-auto-genres.py --library "Anime Movies" --type anime
python plex-auto-genres.py --library "Anime Shows" --type anime
python plex-auto-genres.py --library Movies --type standard-movie
python plex-auto-genres.py --library "TV Shows" --type standard-tv

python plex-auto-genres.py --library Movies --type standard-movie --set-posters
python plex-auto-genres.py --library Movies --type standard-movie --sort
python plex-auto-genres.py --library Movies --type standard-movie --create-rating-collections

python plex-auto-genres.py --type anime --query chihayafuru
python plex-auto-genres.py --type standard-movie --query Thor Ragnarok

Example Usage

Automating

I have conveniently included a script to help with automating the process of running plex-auto-genres when combined with any number of cron scheduling tools such as crontab, windows task scheduler, etc.

If you have experience with Docker I reccommend using my docker image which will run on a schedule.

  1. Copy .env.example to .env and update the values
  2. Copy config.json.example to config.json and update the values
  3. Each entry in the run list will be executed when you run this script
  4. Have some cron/scheduling process execute python3 automate.py, I suggest running it manually first to test that its working.

Note: The first run of this script may take a long time (minutes to hours) depending on your library sizes.

Note: Don't be alarmed if you do not see any text output. The terminal output you normally see when running plex-auto-genres.py is redirected to the log file after each executed run in your config.

Docker Usage

  1. Install Docker
  2. Install Docker Compose
  3. Clone or Download this repository
  4. Edit docker/docker-compose.yml
    1. Update the volumes: paths to point to the config,logs,posters directories in this repo.
    2. Update the environment: variables. See Getting Started.
  5. Copy config/config.json.example to config/config.json
    1. Edit the run array examples to match your needs. When the script runs, each library entry in this array will be updated on your Plex server.
  6. Run docker-compose up -d, the script will run immediately then proceed to run on a schedule every night at 1am UTC. Logs will be located at logs/plex-auto-genres-automate.log

Another Docker option of this tool can be found here.

Troubleshooting

  1. If you are not seeing any new collections close your plex client and re-open it.
  2. Delete the generated plex-*-successful.txt and plex-*-failures.txt files if you want the script to generate collections from the beginning. You may want to do this if you delete your collections and need them re-created.
  3. Having the release year in the title of a tv show or movie can cause the lookup to fail in some instances. For example Battlestar Galactica (2003) will fail, but Battlestar Galactica will not.
Owner
Shane Israel
Shane Israel
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022