Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Overview

Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Requirements

To install requirements:

pip install -r requirements.txt

Training

To train the model(s) in the paper, run the following commands depending on the experiment:

For the MNIST experiment:
python ./mnist/clm_train.py --folder 
   
     --nmodel 
    
      --alpha 
     
       --delta 
      
        --pre 
       
         --pref 
        
          --epochs 
         
           --prse 
          
            --lr 
           
             --adv 
             For the CIFAR-10 experiment: python ./cifar-10/clm_train.py --folder 
             
               --nmodel 
              
                --alpha 
               
                 --delta 
                
                  --pre 
                 
                   --pref 
                  
                    --epochs 
                   
                     --prse 
                    
                      --lr 
                     
                       --adv 
                     
                    
                   
                  
                 
                
               
              
             
             
           
          
         
        
       
      
     
    
   

Evaluation

To evaluate the models against adversarial attacks, run the following commands depending on the experiment:

For the MNIST experiment:
python ./mnist/mra.py --attack 
   
     --folder 
    
      --nmodel 
     
       --epsilon 
      
        --testid 
       
         --batch 
        
          For the CIFAR-10 experiment: python ./cifar-10/attack.py --attack 
         
           --folder 
          
            --nmodel 
           
             --epsilon 
            
              --testid 
             
               --batch 
              
                The following is the list of attacks you can test against: - fgsm: Fast Gradient Sign Method attack - pgd: Projected Gradient Descent attack - Linf - auto: AutoAttack - mifgsm: MI-FGSM attack. 
              
             
            
           
          
         
        
       
      
     
    
   

Pre-trained Models

Pretrained models are included in the folders of mnist and cifar-10.

Since GitHub has a limit of the size of uploaded files, you can download the pretrained models through this link: https://drive.google.com/drive/folders/1Dkupi4bObIKofjKZOwOG0owsBFwfwo_5?usp=sharing

├── LICENSE
├── README.md
├── __init__.py
├── cifar-10
│   ├── clm10-a0.5d0.1-epochs150-prse10 
   
    
│   ├── clm_adv4-a0.1d0.05-epochs150-prse10 
    
     
│   ├── clm_train.py
│   ├── mra.py
│   ├── ulm10 
     
      
│   └── ulm_adv4 
      
       
├── mnist
│   ├── clm10-a0.1d0.1-epochs5-prse10 
       
         │   ├── clm_adv4-a0.01d0.005-epochs5-prse1 
        
          │   ├── clm_train.py │   ├── mra.py │   ├── ulm10 
         
           │   └── ulm_adv4 
          
            ├── models │   ├── lenet5.py │   └── resnet.py └── requirements.txt 
          
         
        
       
      
     
    
   

Contributing

MIT License

Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Matthew Colbrook 1 Apr 08, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022