Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Overview

Rainbow 🌈

An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less data. This was developed as part of an undergraduate university course on scientific research and writing. The results are also available as a spreadsheet here. A selection of videos is available here.

Key Changes and Results

  • We implemented the large IMPALA CNN with 2x channels from Espeholt et al. (2018).
  • The implementation uses large, vectorized environments, asynchronous environment interaction, mixed-precision training, and larger batch sizes to reduce training time.
  • Integrations and recommended preprocessing for >1000 environments from gym, gym-retro and procgen are provided.
  • Due to compute and time constraints, we only trained for 10M frames (compared to 200M in the paper).
  • We implemented all components apart from distributional RL (we saw mixed results with C51 and QR-DQN).

When trained for only 10M frames, this implementation outperforms:

google/dopamine trained for 10M frames on 96% of games
google/dopamine trained for 200M frames on 64% of games
Hessel, et al. (2017) trained for 200M frames on 40% of games
Human results on 72% of games

Most of the observed performance improvements compared to the paper come from switching to the IMPALA CNN as well as some hyperparameter changes (e.g. the 4x larger learning rate).

Setup

Install necessary prerequisites with

sudo apt install zlib1g-dev cmake unrar
pip install wandb gym[atari]==0.18.0 imageio moviepy torchsummary tqdm rich procgen gym-retro torch stable_baselines3 atari_py==0.2.9

If you intend to use gym Atari games, you will need to install these separately, e.g., by running:

wget http://www.atarimania.com/roms/Roms.rar 
unrar x Roms.rar
python -m atari_py.import_roms .

To set up gym-retro games you should follow the instructions here.

How to use

To get started right away, run

python train_rainbow.py --env_name gym:Qbert

This will train Rainbow on Atari Qbert and log all results to "Weights and Biases" and the checkpoints directory.

Please take a look at common/argp.py or run python train_rainbow.py --help for more configuration options.

Some Notes

  • With a single RTX 2080 and 12 CPU cores, training for 10M frames takes around 8-12 hours, depending on the used settings
  • About 15GB of RAM are required. When using a larger replay buffer or subprocess envs, memory use may be much higher
  • Hyperparameters can be configured through command line arguments; defaults can be found in common/argp.py
  • For fastest training throughput use batch_size=512, parallel_envs=64, train_count=1, subproc_vecenv=True

Acknowledgements

We are very grateful to the TU Wien DataLab for providing the majority of the compute resources that were necessary to perform the experiments.

Here are some other implementations and resources that were helpful in the completion of this project:

Owner
Dominik Schmidt
I'm a computer science & math student at the Vienna University of Technology in Austria.
Dominik Schmidt
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022