Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Overview

Rainbow 🌈

An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less data. This was developed as part of an undergraduate university course on scientific research and writing. The results are also available as a spreadsheet here. A selection of videos is available here.

Key Changes and Results

  • We implemented the large IMPALA CNN with 2x channels from Espeholt et al. (2018).
  • The implementation uses large, vectorized environments, asynchronous environment interaction, mixed-precision training, and larger batch sizes to reduce training time.
  • Integrations and recommended preprocessing for >1000 environments from gym, gym-retro and procgen are provided.
  • Due to compute and time constraints, we only trained for 10M frames (compared to 200M in the paper).
  • We implemented all components apart from distributional RL (we saw mixed results with C51 and QR-DQN).

When trained for only 10M frames, this implementation outperforms:

google/dopamine trained for 10M frames on 96% of games
google/dopamine trained for 200M frames on 64% of games
Hessel, et al. (2017) trained for 200M frames on 40% of games
Human results on 72% of games

Most of the observed performance improvements compared to the paper come from switching to the IMPALA CNN as well as some hyperparameter changes (e.g. the 4x larger learning rate).

Setup

Install necessary prerequisites with

sudo apt install zlib1g-dev cmake unrar
pip install wandb gym[atari]==0.18.0 imageio moviepy torchsummary tqdm rich procgen gym-retro torch stable_baselines3 atari_py==0.2.9

If you intend to use gym Atari games, you will need to install these separately, e.g., by running:

wget http://www.atarimania.com/roms/Roms.rar 
unrar x Roms.rar
python -m atari_py.import_roms .

To set up gym-retro games you should follow the instructions here.

How to use

To get started right away, run

python train_rainbow.py --env_name gym:Qbert

This will train Rainbow on Atari Qbert and log all results to "Weights and Biases" and the checkpoints directory.

Please take a look at common/argp.py or run python train_rainbow.py --help for more configuration options.

Some Notes

  • With a single RTX 2080 and 12 CPU cores, training for 10M frames takes around 8-12 hours, depending on the used settings
  • About 15GB of RAM are required. When using a larger replay buffer or subprocess envs, memory use may be much higher
  • Hyperparameters can be configured through command line arguments; defaults can be found in common/argp.py
  • For fastest training throughput use batch_size=512, parallel_envs=64, train_count=1, subproc_vecenv=True

Acknowledgements

We are very grateful to the TU Wien DataLab for providing the majority of the compute resources that were necessary to perform the experiments.

Here are some other implementations and resources that were helpful in the completion of this project:

Owner
Dominik Schmidt
I'm a computer science & math student at the Vienna University of Technology in Austria.
Dominik Schmidt
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021