Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Overview

Rainbow 🌈

An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less data. This was developed as part of an undergraduate university course on scientific research and writing. The results are also available as a spreadsheet here. A selection of videos is available here.

Key Changes and Results

  • We implemented the large IMPALA CNN with 2x channels from Espeholt et al. (2018).
  • The implementation uses large, vectorized environments, asynchronous environment interaction, mixed-precision training, and larger batch sizes to reduce training time.
  • Integrations and recommended preprocessing for >1000 environments from gym, gym-retro and procgen are provided.
  • Due to compute and time constraints, we only trained for 10M frames (compared to 200M in the paper).
  • We implemented all components apart from distributional RL (we saw mixed results with C51 and QR-DQN).

When trained for only 10M frames, this implementation outperforms:

google/dopamine trained for 10M frames on 96% of games
google/dopamine trained for 200M frames on 64% of games
Hessel, et al. (2017) trained for 200M frames on 40% of games
Human results on 72% of games

Most of the observed performance improvements compared to the paper come from switching to the IMPALA CNN as well as some hyperparameter changes (e.g. the 4x larger learning rate).

Setup

Install necessary prerequisites with

sudo apt install zlib1g-dev cmake unrar
pip install wandb gym[atari]==0.18.0 imageio moviepy torchsummary tqdm rich procgen gym-retro torch stable_baselines3 atari_py==0.2.9

If you intend to use gym Atari games, you will need to install these separately, e.g., by running:

wget http://www.atarimania.com/roms/Roms.rar 
unrar x Roms.rar
python -m atari_py.import_roms .

To set up gym-retro games you should follow the instructions here.

How to use

To get started right away, run

python train_rainbow.py --env_name gym:Qbert

This will train Rainbow on Atari Qbert and log all results to "Weights and Biases" and the checkpoints directory.

Please take a look at common/argp.py or run python train_rainbow.py --help for more configuration options.

Some Notes

  • With a single RTX 2080 and 12 CPU cores, training for 10M frames takes around 8-12 hours, depending on the used settings
  • About 15GB of RAM are required. When using a larger replay buffer or subprocess envs, memory use may be much higher
  • Hyperparameters can be configured through command line arguments; defaults can be found in common/argp.py
  • For fastest training throughput use batch_size=512, parallel_envs=64, train_count=1, subproc_vecenv=True

Acknowledgements

We are very grateful to the TU Wien DataLab for providing the majority of the compute resources that were necessary to perform the experiments.

Here are some other implementations and resources that were helpful in the completion of this project:

Owner
Dominik Schmidt
I'm a computer science & math student at the Vienna University of Technology in Austria.
Dominik Schmidt
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022