Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data ๐ŸŒˆ

Overview

Rainbow ๐ŸŒˆ

An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less data. This was developed as part of an undergraduate university course on scientific research and writing. The results are also available as a spreadsheet here. A selection of videos is available here.

Key Changes and Results

  • We implemented the large IMPALA CNN with 2x channels from Espeholt et al. (2018).
  • The implementation uses large, vectorized environments, asynchronous environment interaction, mixed-precision training, and larger batch sizes to reduce training time.
  • Integrations and recommended preprocessing for >1000 environments from gym, gym-retro and procgen are provided.
  • Due to compute and time constraints, we only trained for 10M frames (compared to 200M in the paper).
  • We implemented all components apart from distributional RL (we saw mixed results with C51 and QR-DQN).

When trained for only 10M frames, this implementation outperforms:

google/dopamine trained for 10M frames on 96% of games
google/dopamine trained for 200M frames on 64% of games
Hessel, et al. (2017) trained for 200M frames on 40% of games
Human results on 72% of games

Most of the observed performance improvements compared to the paper come from switching to the IMPALA CNN as well as some hyperparameter changes (e.g. the 4x larger learning rate).

Setup

Install necessary prerequisites with

sudo apt install zlib1g-dev cmake unrar
pip install wandb gym[atari]==0.18.0 imageio moviepy torchsummary tqdm rich procgen gym-retro torch stable_baselines3 atari_py==0.2.9

If you intend to use gym Atari games, you will need to install these separately, e.g., by running:

wget http://www.atarimania.com/roms/Roms.rar 
unrar x Roms.rar
python -m atari_py.import_roms .

To set up gym-retro games you should follow the instructions here.

How to use

To get started right away, run

python train_rainbow.py --env_name gym:Qbert

This will train Rainbow on Atari Qbert and log all results to "Weights and Biases" and the checkpoints directory.

Please take a look at common/argp.py or run python train_rainbow.py --help for more configuration options.

Some Notes

  • With a single RTX 2080 and 12 CPU cores, training for 10M frames takes around 8-12 hours, depending on the used settings
  • About 15GB of RAM are required. When using a larger replay buffer or subprocess envs, memory use may be much higher
  • Hyperparameters can be configured through command line arguments; defaults can be found in common/argp.py
  • For fastest training throughput use batch_size=512, parallel_envs=64, train_count=1, subproc_vecenv=True

Acknowledgements

We are very grateful to the TU Wien DataLab for providing the majority of the compute resources that were necessary to perform the experiments.

Here are some other implementations and resources that were helpful in the completion of this project:

Owner
Dominik Schmidt
I'm a computer science & math student at the Vienna University of Technology in Austria.
Dominik Schmidt
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
ใ€ŠLerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtionใ€‹

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022