Time Dependent DFT in Tamm-Dancoff Approximation

Overview

image

Density Function Theory Program - kspy-tddft(tda)

This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff Approximation (TDA).

The Grid

I could have used a cube as a space grid and then taken Riemann sums to evaluate (there's a great YouTube series by James Johns where he develops a matlab HF program and shows how to convert it to DFT. In this he uses Riemann sums to evaluate the integrals in the DFT program.) However, I decided to try for a 'proper' atom centered spherical grid approach. A useful paper was PMW Gill, BG Johnson and JA Poples 'A standard grid for density functional theory', although I didn't use this SG-1 grid the paper helped understand the techniques involved. The grid I settled on was a coarse grid of (10,15) radial points for period 1 and period 2 elements respectively. The radial grid is a Mura-Knowles radial grid ME Mura and PJ Knowles 'Improved radial grids for quadrature in density-functional calculations' JCP 104, 9848 (1996); DOI:10.1063/1.471749. The 'coarse' angular grid is of Lebedev orders (11, 15) for period 1 and period 2 respectively. This translates into 50 and 86 points respectively arranged on a spherical shell (VI Lebedev, and DN Laikov, Doklady Mathematics, 'A Quadrature formula for the sphere of the 131st algebraic order of accuracy' Vol. 59, No. 3, (1999)). There are various sources for this data given in the external links of the wikipedia article on Lebedev integration. A pruning scheme is employed to systematically reduce the number of angular points in regions where dense angular quadrature is not necessary, such as near the nuclei where the charge density is approximately spherically symmetric and at long distance from the nucleus. The pruning scheme I employed was the Treutler-Aldrich scheme O Treutler and R Ahlrich, 'Efficient molecular numerical integration schemes' JCP 102, 346 (1995); DOI:10.1063/1.469408. The partitioning of the atomic centered grids to a molecular grid follows a Becke scheme after Stratmann RE Stratmann, GE Scuseria and MJ Frisch, 'Achieving Linear scaling in exchange-correlation density functional quadratures' CPL 257, 3-4 (1996); DOI:10.1016/009-2614(96)00600-8. Finally I have implemented a final radius adjustment during the partition (Becke suggests doing this) using the Bragg radius. A second 'close' grid is also included which is a (50, 75) radial and (29, 29) angular, the latter representing 302 points on each shell. The grid routines are in ks_grid.py.

The HF Integrals

To get the DFT SCF started we need an initial density. To do this I use a HF overlap matrix S, and an initial Fock matrix composed of the sum of the 1-electron kinetic and coulomb integrals (core Hamiltonian - T+V). This Fock is then orthogonalised (F') as (S-0.5)TFS-0.5, eigensolve the resulting orthogonal Fock for orbital coefficients C orthogonal, transform back to atomic basis as S-0.5C', use resulting ao coefficients to compute a density matrix Dμν = cμic where i is over occupied orbitals. This initial density can be used with initial Fock and 2-electron repulsion integrals to form the coulomb integral J (we don't want the HF exchange integral K for DFT). To get these integrals I've used a modified version of Harpy's Cython integral package aello. This version is slightly different from the version in kspy_lda in that the dipole routine returns the component matrices rather than the actual dipole, additionally the angular and nabla routines have been added. These are in ks_aello.pyx.

Molecule and Basis Sets

The molecule definition is contained in a mol object which is itself comprised of objects from an atom class. Each instance of the atom class contains the atom symbol, atomic number and the coordinates of the atom center (array[3]). The molecule is hard coded as H2O. The basis is contained in an orb object which is itself comprised of objects from a gaussian class. Each instance of the gaussian class contains the atom the Gaussian is centered on, the momentum(array[3]), the exponents (array[primatives], the coefficients (array[primatives]), the normalisation (array[primatives]) and a copy of the atom center coordinates (array[3]). The momenta are given as s [0,0,0] px [1,0,0] py [0,1,0] and pz [0,0,1]. The basis used is a simple STO-3G so we only require s and p orbitals. The primatives exponent and coefficient values are hard-coded in the main section. (I use the psi4 format of the basis sets from BSE which have some (small) differences from the nwchem format versions as used by eg pyscf. This might lead to numerical differences in values when using high precision).

The Functionals

The choice of functionals here was determined solely because htey have easily determined analytic derivatives. The second derivatives of the exchange-correlation energy are needed in TDDFT to determine the orbital Hessian for the coupling matrix. The exchange functional is Slater LDA and the correlation functional is RPA. For TDDFT we are working in a molecular spin basis so will use spin polarized versions of the functional (with α = β). The derivatives used are given below

image

TDDFT

Details of TDDFT can be found in Time-dependent density-functional theory for molecules and molecular solids, ME Casida, Journal of Molecular Structure: THEOCHEM 914 (2009) 3–18 and Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules, A Dreuw and M Head-Gordon, Chem. Rev.2005,105,4009−4037. The basic equations for the excitation (de-excitation) energies are image

The calculation of singlet and triplet states is analogous to the spin-adapted CIS calculation in HF theory see. The class TDA is provided to compute the excitation energies and coefficients for either singlet or triplet states. The class provides a response property which is a tuple (energy, coefficients).

Response Properties

An example of calculating transition properties in TDDFT is given in this psicon 2020 document. We calculate the electric transition dipoles in both length (μ) and velocity (∇) gauges together with the associated oscillator strengths. Additionally the magnetic transition dipoles are calculated in the length (L) gauge and the rotary strengths in both gauges. All the previous properties are returned by the transition_properties method of the TDA_properties class.
A basic transition natural orbital treatment is available from the transition_NO method of the TDA_properties class. Martin, R. L., Journal of Chemical Physics, 118, 4775-4777.
A spectrum method of the TDA_properties class is provided to plot the spectrum of oscillator strengths in both gauges. This is all provided in the module ks_tda. See results.md for more details.

Owner
Peter Borthwick
Retired. M.Sc Mathematics (Kings', London), Ph.D in theoretical chemistry.
Peter Borthwick
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022