DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

Related tags

Deep LearningDynaTune
Overview

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

This repository is the implementation of DynaTune paper. This folder dynatune includes all the files DynaTune needs.

Requirements

Install TVM first. You can find TVM installation instructions here. Note: This project is based on TVM version in Feb/2021. You could find a project copy from here.

Prepare llvm:

wget https://releases.llvm.org/6.0.0/clang+llvm-6.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz
tar xvJf clang+llvm-6.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz 
   

   

Clone the TVM project from github:

git clone --recursive https://github.com/limenghao/incubator-tvm tvm
sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev
mkdir build
cp cmake/config.cmake build

Edit build/config.cmake:

set(USE_LLVM 
   
    /bin/llvm-config)
set(USE_CUDA ON) (you can ignore this if you want to test cpu only)

   

Building:

cd build
cmake ..
make -j6

Add TVM into PYTHONPATH, edit your ~/.bashrc:

export TVM_HOME=/path/to/tvm
export PYTHONPATH=$TVM_HOME/python:$TVM_HOME/topi/python:${PYTHONPATH}

Install other required packages:

pip install -r requirements.txt

Add DynaTune files.

cp dynatune 
   
    /python/tvm/
cp tuner/tuner.py 
    
     /python/tvm/autotvm/tuner/
cp measure/measure_methods.py 
     
      /python/tvm/autotvm/measure/

     
    
   

Install the packages used in pylearnpredictor.

pip install emcee  lmfit

Classes introduction

  • TaskState: Basic enitity class for DynaTune, save all middle-states of each task in the tuning.
  • TaskScheduler: Base class of tasks scheduler which allocate the time slices.
  • RandomScheduler, RoundRobinScheduler: Simple dynamic scheduler with random/roundrobin selecting strategy.
  • TaskPredictor: The model to fit the learning curve, which helps to calculate the potential gain of each tasks. It uses the models in the project pylrpredictor with some changes to be usable for DynaTune.
  • TaskSelector: The strategy used to select the task among the tasks with their calculated potential gains.
  • UCB1Selector
  • MultiArmBanditScheduler: The flexible scheduler with predictor and selector.

Example

  • import packages.
import os
import numpy as np
import tvm
from tvm import te
from tvm import autotvm
from tvm import relay
from tvm.relay import testing
from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner
from tvm.autotvm.graph_tuner import DPTuner, PBQPTuner
import tvm.contrib.graph_runtime as runtime
from tvm.dynatune.scheduler import RandomTaskScheduler, RoundRobinScheduler,MultiArmBanditScheduler
  • Get the symbol definition and random weight of a network.
def get_network(name, batch_size):
    input_shape = (batch_size, 3, 224, 224)
    output_shape = (batch_size, 1000)

    if "resnet" in name:
        n_layer = int(name.split('-')[1])
        mod, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
    elif "vgg" in name:
        n_layer = int(name.split('-')[1])
        mod, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
    elif name == 'mobilenet':
        mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
    elif name == 'squeezenet_v1.1':
        mod, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
    elif name == 'inception_v3':
        input_shape = (1, 3, 299, 299)
        mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
    elif name == 'mxnet':
        # an example for mxnet model
        from mxnet.gluon.model_zoo.vision import get_model
        block = get_model('resnet18_v1', pretrained=True)
        mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)
        net = mod["main"]
        net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
        mod = tvm.IRModule.from_expr(net)
    else:
        raise ValueError("Unsupported network: " + name)

    return mod, params, input_shape, output_shape
  • Set up basic configuration
target = "llvm" 
batch_size = 1
dtype = "float32"
model_name = "resnet-18"
log_file = "%s-cpu-random5hr.log" % model_name
input_name = "data"
tuning_option = {
    'log_filename': log_file,
    'tuner': 'xgb',
    'early_stopping': 50,
    'measure_option': autotvm.measure_option(
        builder=autotvm.LocalBuilder(),
        runner=autotvm.LocalRunner(number=500, repeat=1, max_converge_coef=0.1, timeout=100),
    ),
}
  • Main function.
def tune_and_evaluate(tuning_opt):
    mod, params, data_shape, out_shape = get_network(model_name, batch_size)
    tasks = autotvm.task.extract_from_program(mod["main"], target=target,
                                              params=params,
                                              ops=(relay.op.get("nn.conv2d"),))
    tscheduler = MultiArmBanditScheduler(tasks, 360, 20, **tuning_opt, predictor="ml")
    tscheduler.schedule()
    with autotvm.apply_history_best(log_file):
        with tvm.transform.PassContext(opt_level=3):
            graph, lib, params = relay.build_module.build(
                mod, target=target, params=params)
        ctx = tvm.cpu()
        data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
        module = runtime.create(graph, lib, ctx)
        module.set_input(input_name, data_tvm)
        module.set_input(**params)
        module.run()
        out = module.get_output(0)
        print(out)
        # evaluate
        print("Evaluate inference time cost...")
        ftimer = module.module.time_evaluator("run", ctx, number=500, repeat=1)
        prof_res = np.array(ftimer().results) * 1000  # convert to millisecond
        print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
              (np.mean(prof_res), np.std(prof_res)))
  • Call the main function.
tune_and_evaluate(tuning_option)

End

Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022