DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

Related tags

Deep LearningDynaTune
Overview

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

This repository is the implementation of DynaTune paper. This folder dynatune includes all the files DynaTune needs.

Requirements

Install TVM first. You can find TVM installation instructions here. Note: This project is based on TVM version in Feb/2021. You could find a project copy from here.

Prepare llvm:

wget https://releases.llvm.org/6.0.0/clang+llvm-6.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz
tar xvJf clang+llvm-6.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz 
   

   

Clone the TVM project from github:

git clone --recursive https://github.com/limenghao/incubator-tvm tvm
sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev
mkdir build
cp cmake/config.cmake build

Edit build/config.cmake:

set(USE_LLVM 
   
    /bin/llvm-config)
set(USE_CUDA ON) (you can ignore this if you want to test cpu only)

   

Building:

cd build
cmake ..
make -j6

Add TVM into PYTHONPATH, edit your ~/.bashrc:

export TVM_HOME=/path/to/tvm
export PYTHONPATH=$TVM_HOME/python:$TVM_HOME/topi/python:${PYTHONPATH}

Install other required packages:

pip install -r requirements.txt

Add DynaTune files.

cp dynatune 
   
    /python/tvm/
cp tuner/tuner.py 
    
     /python/tvm/autotvm/tuner/
cp measure/measure_methods.py 
     
      /python/tvm/autotvm/measure/

     
    
   

Install the packages used in pylearnpredictor.

pip install emcee  lmfit

Classes introduction

  • TaskState: Basic enitity class for DynaTune, save all middle-states of each task in the tuning.
  • TaskScheduler: Base class of tasks scheduler which allocate the time slices.
  • RandomScheduler, RoundRobinScheduler: Simple dynamic scheduler with random/roundrobin selecting strategy.
  • TaskPredictor: The model to fit the learning curve, which helps to calculate the potential gain of each tasks. It uses the models in the project pylrpredictor with some changes to be usable for DynaTune.
  • TaskSelector: The strategy used to select the task among the tasks with their calculated potential gains.
  • UCB1Selector
  • MultiArmBanditScheduler: The flexible scheduler with predictor and selector.

Example

  • import packages.
import os
import numpy as np
import tvm
from tvm import te
from tvm import autotvm
from tvm import relay
from tvm.relay import testing
from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner
from tvm.autotvm.graph_tuner import DPTuner, PBQPTuner
import tvm.contrib.graph_runtime as runtime
from tvm.dynatune.scheduler import RandomTaskScheduler, RoundRobinScheduler,MultiArmBanditScheduler
  • Get the symbol definition and random weight of a network.
def get_network(name, batch_size):
    input_shape = (batch_size, 3, 224, 224)
    output_shape = (batch_size, 1000)

    if "resnet" in name:
        n_layer = int(name.split('-')[1])
        mod, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
    elif "vgg" in name:
        n_layer = int(name.split('-')[1])
        mod, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
    elif name == 'mobilenet':
        mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
    elif name == 'squeezenet_v1.1':
        mod, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
    elif name == 'inception_v3':
        input_shape = (1, 3, 299, 299)
        mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
    elif name == 'mxnet':
        # an example for mxnet model
        from mxnet.gluon.model_zoo.vision import get_model
        block = get_model('resnet18_v1', pretrained=True)
        mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)
        net = mod["main"]
        net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
        mod = tvm.IRModule.from_expr(net)
    else:
        raise ValueError("Unsupported network: " + name)

    return mod, params, input_shape, output_shape
  • Set up basic configuration
target = "llvm" 
batch_size = 1
dtype = "float32"
model_name = "resnet-18"
log_file = "%s-cpu-random5hr.log" % model_name
input_name = "data"
tuning_option = {
    'log_filename': log_file,
    'tuner': 'xgb',
    'early_stopping': 50,
    'measure_option': autotvm.measure_option(
        builder=autotvm.LocalBuilder(),
        runner=autotvm.LocalRunner(number=500, repeat=1, max_converge_coef=0.1, timeout=100),
    ),
}
  • Main function.
def tune_and_evaluate(tuning_opt):
    mod, params, data_shape, out_shape = get_network(model_name, batch_size)
    tasks = autotvm.task.extract_from_program(mod["main"], target=target,
                                              params=params,
                                              ops=(relay.op.get("nn.conv2d"),))
    tscheduler = MultiArmBanditScheduler(tasks, 360, 20, **tuning_opt, predictor="ml")
    tscheduler.schedule()
    with autotvm.apply_history_best(log_file):
        with tvm.transform.PassContext(opt_level=3):
            graph, lib, params = relay.build_module.build(
                mod, target=target, params=params)
        ctx = tvm.cpu()
        data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
        module = runtime.create(graph, lib, ctx)
        module.set_input(input_name, data_tvm)
        module.set_input(**params)
        module.run()
        out = module.get_output(0)
        print(out)
        # evaluate
        print("Evaluate inference time cost...")
        ftimer = module.module.time_evaluator("run", ctx, number=500, repeat=1)
        prof_res = np.array(ftimer().results) * 1000  # convert to millisecond
        print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
              (np.mean(prof_res), np.std(prof_res)))
  • Call the main function.
tune_and_evaluate(tuning_option)

End

ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022