DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

Related tags

Deep LearningDynaTune
Overview

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

This repository is the implementation of DynaTune paper. This folder dynatune includes all the files DynaTune needs.

Requirements

Install TVM first. You can find TVM installation instructions here. Note: This project is based on TVM version in Feb/2021. You could find a project copy from here.

Prepare llvm:

wget https://releases.llvm.org/6.0.0/clang+llvm-6.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz
tar xvJf clang+llvm-6.0.0-x86_64-linux-gnu-ubuntu-16.04.tar.xz 
   

   

Clone the TVM project from github:

git clone --recursive https://github.com/limenghao/incubator-tvm tvm
sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev
mkdir build
cp cmake/config.cmake build

Edit build/config.cmake:

set(USE_LLVM 
   
    /bin/llvm-config)
set(USE_CUDA ON) (you can ignore this if you want to test cpu only)

   

Building:

cd build
cmake ..
make -j6

Add TVM into PYTHONPATH, edit your ~/.bashrc:

export TVM_HOME=/path/to/tvm
export PYTHONPATH=$TVM_HOME/python:$TVM_HOME/topi/python:${PYTHONPATH}

Install other required packages:

pip install -r requirements.txt

Add DynaTune files.

cp dynatune 
   
    /python/tvm/
cp tuner/tuner.py 
    
     /python/tvm/autotvm/tuner/
cp measure/measure_methods.py 
     
      /python/tvm/autotvm/measure/

     
    
   

Install the packages used in pylearnpredictor.

pip install emcee  lmfit

Classes introduction

  • TaskState: Basic enitity class for DynaTune, save all middle-states of each task in the tuning.
  • TaskScheduler: Base class of tasks scheduler which allocate the time slices.
  • RandomScheduler, RoundRobinScheduler: Simple dynamic scheduler with random/roundrobin selecting strategy.
  • TaskPredictor: The model to fit the learning curve, which helps to calculate the potential gain of each tasks. It uses the models in the project pylrpredictor with some changes to be usable for DynaTune.
  • TaskSelector: The strategy used to select the task among the tasks with their calculated potential gains.
  • UCB1Selector
  • MultiArmBanditScheduler: The flexible scheduler with predictor and selector.

Example

  • import packages.
import os
import numpy as np
import tvm
from tvm import te
from tvm import autotvm
from tvm import relay
from tvm.relay import testing
from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner
from tvm.autotvm.graph_tuner import DPTuner, PBQPTuner
import tvm.contrib.graph_runtime as runtime
from tvm.dynatune.scheduler import RandomTaskScheduler, RoundRobinScheduler,MultiArmBanditScheduler
  • Get the symbol definition and random weight of a network.
def get_network(name, batch_size):
    input_shape = (batch_size, 3, 224, 224)
    output_shape = (batch_size, 1000)

    if "resnet" in name:
        n_layer = int(name.split('-')[1])
        mod, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
    elif "vgg" in name:
        n_layer = int(name.split('-')[1])
        mod, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
    elif name == 'mobilenet':
        mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
    elif name == 'squeezenet_v1.1':
        mod, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
    elif name == 'inception_v3':
        input_shape = (1, 3, 299, 299)
        mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
    elif name == 'mxnet':
        # an example for mxnet model
        from mxnet.gluon.model_zoo.vision import get_model
        block = get_model('resnet18_v1', pretrained=True)
        mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)
        net = mod["main"]
        net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
        mod = tvm.IRModule.from_expr(net)
    else:
        raise ValueError("Unsupported network: " + name)

    return mod, params, input_shape, output_shape
  • Set up basic configuration
target = "llvm" 
batch_size = 1
dtype = "float32"
model_name = "resnet-18"
log_file = "%s-cpu-random5hr.log" % model_name
input_name = "data"
tuning_option = {
    'log_filename': log_file,
    'tuner': 'xgb',
    'early_stopping': 50,
    'measure_option': autotvm.measure_option(
        builder=autotvm.LocalBuilder(),
        runner=autotvm.LocalRunner(number=500, repeat=1, max_converge_coef=0.1, timeout=100),
    ),
}
  • Main function.
def tune_and_evaluate(tuning_opt):
    mod, params, data_shape, out_shape = get_network(model_name, batch_size)
    tasks = autotvm.task.extract_from_program(mod["main"], target=target,
                                              params=params,
                                              ops=(relay.op.get("nn.conv2d"),))
    tscheduler = MultiArmBanditScheduler(tasks, 360, 20, **tuning_opt, predictor="ml")
    tscheduler.schedule()
    with autotvm.apply_history_best(log_file):
        with tvm.transform.PassContext(opt_level=3):
            graph, lib, params = relay.build_module.build(
                mod, target=target, params=params)
        ctx = tvm.cpu()
        data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
        module = runtime.create(graph, lib, ctx)
        module.set_input(input_name, data_tvm)
        module.set_input(**params)
        module.run()
        out = module.get_output(0)
        print(out)
        # evaluate
        print("Evaluate inference time cost...")
        ftimer = module.module.time_evaluator("run", ctx, number=500, repeat=1)
        prof_res = np.array(ftimer().results) * 1000  # convert to millisecond
        print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
              (np.mean(prof_res), np.std(prof_res)))
  • Call the main function.
tune_and_evaluate(tuning_option)

End

This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stanยฎ is

Stan 229 Dec 29, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
๐Ÿ’Š A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Yolov3 pytorch implementation

YOLOV3 Pytorchๅฎž็Žฐ ๅœจbubbliiingๅคงไฝฌไปฃ็ ็š„ๅŸบ็ก€ไธŠ่ฟ›่กŒไบ†ไฟฎๆ”น๏ผŒๆทปๅŠ ไบ†้ƒจๅˆ†ๆณจ้‡Šใ€‚ ้ข„่ฎญ็ปƒๆจกๅž‹ ้ข„่ฎญ็ปƒๆจกๅž‹ๆฅๆบไบŽbubbliiingใ€‚ ้“พๆŽฅ๏ผšhttps://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw ๆๅ–็ ๏ผšappk ่ฎญ็ปƒ่‡ชๅทฑ็š„ๆ•ฐๆฎ้›† ๆŒ‰็…งVO

4 Aug 27, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection๏ผ› Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022