OpenAi's gym environment wrapper to vectorize them with Ray

Overview

Ray Vector Environment Wrapper

You would like to use Ray to vectorize your environment but you don't want to use RLLib ?
You came to the right place !

This package allows you to parallelize your environment using Ray
Not only does it allows to run environments in parallel, but it also permits to run multiple sequential environments on each worker
For example, you can run 80 workers in parallel, each running 10 sequential environments for a total of 80 * 10 environments
This can be useful if your environment is fast and simply running 1 environment per worker leads to too much communication overhead between workers

Installation

pip install RayEnvWrapper

If something went wrong, it most certainly is because of Ray
For example, you might have issue installing Ray on Apple Silicon (i.e., M1) laptop. See Ray's documentation for a simple fix
At the moment Ray does not support Python 3.10. This package has been tested with Python 3.9.

How does it work?

You first need to define a function that seed and return your environment:

Here is an example for CartPole:

import gym

def make_and_seed(seed: int) -> gym.Env:
    env = gym.make('CartPole-v0')
    env = gym.wrappers.RecordEpisodeStatistics(env) # you can put extra wrapper to your original environment
    env.seed(seed)
    return env

Note: If you don't want to seed your environment, simply return it without using the seed, but the function you define needs to take a number as an input

Then, call the wrapper to create and wrap all the vectorized environment:

from RayEnvWrapper import WrapperRayVecEnv

number_of_workers = 4 # Usually, this is set to the number of CPUs in your machine
envs_per_worker = 2

vec_env = WrapperRayVecEnv(make_and_seed, number_of_workers, envs_per_worker)

You can then use your environment. All the output for each of the environments are stacked in a numpy array

Reset:

vec_env.reset()

Output

[[ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]]

The i-th entry represent the initial observation of the i-th environment
Note: As environments are vectorized, you don't need explicitly to reset the environment at the end of the episode, it is done automatically However, you need to do it once at the beginning

Take a random action:

vec_env.step([vec_env.action_space.sample() for _ in range(number_of_workers * envs_per_worker)])

Notice how the actions are passed. We pass an array containing an action for each of the environments
Thus, the array is of size number_of_workers * envs_per_worker (i.e., the total number of environments)

Output

(array([[ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ]],
      dtype=float32), 
 array([1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32), 
 array([False, False, False, False, False, False, False, False]), 
 [{}, {}, {}, {}, {}, {}, {}, {}])

As usual, the step method returns a tuple, except that here both the observation, reward, dones and infos are concatenated
In this specific example, we have 2 environments per worker.
Index 0 and 1 are environments from worker 1; index 1 and 2 are environments from worker 2, etc.

License

Apache License 2.0

You might also like...
A
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Customizable RecSys Simulator for OpenAI Gym
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

Multi-objective gym environments for reinforcement learning.
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

Comments
  • envs_per_worker

    envs_per_worker

    Hi!@ingambe. Thank you very much for your work! I have some questions. What does the "worker and envs" mean here? My understanding is as follows:

    • Worker represents a process. Two env in a worker belong to two threads.

    I don't know if I understand this correctly. Thanks! image

    opened by Meta-YZ 2
  • how to wrap two DIFFERENT environments?

    how to wrap two DIFFERENT environments?

    Thank you for upload the package. My question is is there a way to stack different environments together? For example I have ten or hundreds different race track environments and I want to train an agent simultaneously drive through this vectorized environment. In stable baseline I can stack them together and train a vectorized environment. Now I want to move to ray and try to speed up the training by using multiple gpu...but so far didn't figure out how to do this. Thanks in advance

    enhancement 
    opened by superfan123 1
Releases(v1.0)
Owner
Pierre TASSEL
Pierre TASSEL
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022