OpenAi's gym environment wrapper to vectorize them with Ray

Overview

Ray Vector Environment Wrapper

You would like to use Ray to vectorize your environment but you don't want to use RLLib ?
You came to the right place !

This package allows you to parallelize your environment using Ray
Not only does it allows to run environments in parallel, but it also permits to run multiple sequential environments on each worker
For example, you can run 80 workers in parallel, each running 10 sequential environments for a total of 80 * 10 environments
This can be useful if your environment is fast and simply running 1 environment per worker leads to too much communication overhead between workers

Installation

pip install RayEnvWrapper

If something went wrong, it most certainly is because of Ray
For example, you might have issue installing Ray on Apple Silicon (i.e., M1) laptop. See Ray's documentation for a simple fix
At the moment Ray does not support Python 3.10. This package has been tested with Python 3.9.

How does it work?

You first need to define a function that seed and return your environment:

Here is an example for CartPole:

import gym

def make_and_seed(seed: int) -> gym.Env:
    env = gym.make('CartPole-v0')
    env = gym.wrappers.RecordEpisodeStatistics(env) # you can put extra wrapper to your original environment
    env.seed(seed)
    return env

Note: If you don't want to seed your environment, simply return it without using the seed, but the function you define needs to take a number as an input

Then, call the wrapper to create and wrap all the vectorized environment:

from RayEnvWrapper import WrapperRayVecEnv

number_of_workers = 4 # Usually, this is set to the number of CPUs in your machine
envs_per_worker = 2

vec_env = WrapperRayVecEnv(make_and_seed, number_of_workers, envs_per_worker)

You can then use your environment. All the output for each of the environments are stacked in a numpy array

Reset:

vec_env.reset()

Output

[[ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]]

The i-th entry represent the initial observation of the i-th environment
Note: As environments are vectorized, you don't need explicitly to reset the environment at the end of the episode, it is done automatically However, you need to do it once at the beginning

Take a random action:

vec_env.step([vec_env.action_space.sample() for _ in range(number_of_workers * envs_per_worker)])

Notice how the actions are passed. We pass an array containing an action for each of the environments
Thus, the array is of size number_of_workers * envs_per_worker (i.e., the total number of environments)

Output

(array([[ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ]],
      dtype=float32), 
 array([1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32), 
 array([False, False, False, False, False, False, False, False]), 
 [{}, {}, {}, {}, {}, {}, {}, {}])

As usual, the step method returns a tuple, except that here both the observation, reward, dones and infos are concatenated
In this specific example, we have 2 environments per worker.
Index 0 and 1 are environments from worker 1; index 1 and 2 are environments from worker 2, etc.

License

Apache License 2.0

You might also like...
A
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Customizable RecSys Simulator for OpenAI Gym
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

Multi-objective gym environments for reinforcement learning.
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

Comments
  • envs_per_worker

    envs_per_worker

    Hi!@ingambe. Thank you very much for your work! I have some questions. What does the "worker and envs" mean here? My understanding is as follows:

    • Worker represents a process. Two env in a worker belong to two threads.

    I don't know if I understand this correctly. Thanks! image

    opened by Meta-YZ 2
  • how to wrap two DIFFERENT environments?

    how to wrap two DIFFERENT environments?

    Thank you for upload the package. My question is is there a way to stack different environments together? For example I have ten or hundreds different race track environments and I want to train an agent simultaneously drive through this vectorized environment. In stable baseline I can stack them together and train a vectorized environment. Now I want to move to ray and try to speed up the training by using multiple gpu...but so far didn't figure out how to do this. Thanks in advance

    enhancement 
    opened by superfan123 1
Releases(v1.0)
Owner
Pierre TASSEL
Pierre TASSEL
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022