OpenAi's gym environment wrapper to vectorize them with Ray

Overview

Ray Vector Environment Wrapper

You would like to use Ray to vectorize your environment but you don't want to use RLLib ?
You came to the right place !

This package allows you to parallelize your environment using Ray
Not only does it allows to run environments in parallel, but it also permits to run multiple sequential environments on each worker
For example, you can run 80 workers in parallel, each running 10 sequential environments for a total of 80 * 10 environments
This can be useful if your environment is fast and simply running 1 environment per worker leads to too much communication overhead between workers

Installation

pip install RayEnvWrapper

If something went wrong, it most certainly is because of Ray
For example, you might have issue installing Ray on Apple Silicon (i.e., M1) laptop. See Ray's documentation for a simple fix
At the moment Ray does not support Python 3.10. This package has been tested with Python 3.9.

How does it work?

You first need to define a function that seed and return your environment:

Here is an example for CartPole:

import gym

def make_and_seed(seed: int) -> gym.Env:
    env = gym.make('CartPole-v0')
    env = gym.wrappers.RecordEpisodeStatistics(env) # you can put extra wrapper to your original environment
    env.seed(seed)
    return env

Note: If you don't want to seed your environment, simply return it without using the seed, but the function you define needs to take a number as an input

Then, call the wrapper to create and wrap all the vectorized environment:

from RayEnvWrapper import WrapperRayVecEnv

number_of_workers = 4 # Usually, this is set to the number of CPUs in your machine
envs_per_worker = 2

vec_env = WrapperRayVecEnv(make_and_seed, number_of_workers, envs_per_worker)

You can then use your environment. All the output for each of the environments are stacked in a numpy array

Reset:

vec_env.reset()

Output

[[ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.03073904  0.00145001 -0.03088818 -0.03131252]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [ 0.02281231 -0.02475473  0.02306162  0.02072129]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.03742824 -0.02316945  0.0148571   0.0296055 ]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]
 [-0.0224773   0.04186813 -0.01038048  0.03759079]]

The i-th entry represent the initial observation of the i-th environment
Note: As environments are vectorized, you don't need explicitly to reset the environment at the end of the episode, it is done automatically However, you need to do it once at the beginning

Take a random action:

vec_env.step([vec_env.action_space.sample() for _ in range(number_of_workers * envs_per_worker)])

Notice how the actions are passed. We pass an array containing an action for each of the environments
Thus, the array is of size number_of_workers * envs_per_worker (i.e., the total number of environments)

Output

(array([[ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.03076804, -0.19321568, -0.03151444,  0.25146705],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [ 0.02231721, -0.22019969,  0.02347605,  0.3205903 ],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.03789163, -0.21850128,  0.01544921,  0.32693872],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ],
       [-0.02163994, -0.15310344, -0.00962866,  0.3269806 ]],
      dtype=float32), 
 array([1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32), 
 array([False, False, False, False, False, False, False, False]), 
 [{}, {}, {}, {}, {}, {}, {}, {}])

As usual, the step method returns a tuple, except that here both the observation, reward, dones and infos are concatenated
In this specific example, we have 2 environments per worker.
Index 0 and 1 are environments from worker 1; index 1 and 2 are environments from worker 2, etc.

License

Apache License 2.0

You might also like...
A
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Customizable RecSys Simulator for OpenAI Gym
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

Multi-objective gym environments for reinforcement learning.
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

Comments
  • envs_per_worker

    envs_per_worker

    Hi!@ingambe. Thank you very much for your work! I have some questions. What does the "worker and envs" mean here? My understanding is as follows:

    • Worker represents a process. Two env in a worker belong to two threads.

    I don't know if I understand this correctly. Thanks! image

    opened by Meta-YZ 2
  • how to wrap two DIFFERENT environments?

    how to wrap two DIFFERENT environments?

    Thank you for upload the package. My question is is there a way to stack different environments together? For example I have ten or hundreds different race track environments and I want to train an agent simultaneously drive through this vectorized environment. In stable baseline I can stack them together and train a vectorized environment. Now I want to move to ray and try to speed up the training by using multiple gpu...but so far didn't figure out how to do this. Thanks in advance

    enhancement 
    opened by superfan123 1
Releases(v1.0)
Owner
Pierre TASSEL
Pierre TASSEL
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022