Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Overview

Manipulator Learning

This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In particular, we have a set of environments with a simulated version of our lab's mobile manipulator, the Thing, containing a UR10 mounted on a Ridgeback base, as well as a set of environments using a table-mounted Franka Emika Panda.

The package currently contains variations of the following tasks:

  • Reach
  • Lift
  • Stack
  • Pick and Place
  • Sort
  • Insert
  • Pick and Insert
  • Door Open
  • Play (multitask)

Requirements

  • python (3.7+)
  • pybullet
  • numpy
  • gym
  • transforms3d
  • Pillow (for rendering)
  • liegroups

Installation

git clone https://github.com/utiasSTARS/manipulator-learning
cd manipulator-learning && pip install .

Usage

The easiest way to use environments in this repository is to import the whole envs module and then initialize using getattr. For example, to load our Panda Play environment with the insertion tray:

import manipulator_learning.sim.envs as manlearn_envs
env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')()

obs = env.reset()
next_obs, rew, done, info = env.step(env.action_space.sample())

You can also easily initialize the environment with a wide variety of different keyword arguments, e.g:

env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')(main_task='stack_01')

Image environments

All environments that are suffixed with Image or Multiview produce observations that contain RGB and depth images as well as numerical proprioceptive data. Here is an example of how you can access each type of data in these environments:

obs = env.reset()
img = obs['img']
depth = obs['depth']
proprioceptive = obs['obs']

By default, all image based environments render headlessly using EGL, but if you want to render the full pybullet GUI, you can using the render_opengl_gui and egl flags like this:

env = getattr(manlearn_envs, 'PandaPlayInsertTrayXYZState')(render_opengl_gui=True, egl=False)

Environment Details

Thing (mobile manipulator) environments

Our mobile manipulation environments were primarily designed to allow base position changes between task episodes, but don't actually allow movement during an episode. For this reason, many included environments include both an Image version and a Multiview version, where all observation and control parameters are identical, except that the base is fixed in the Image version, and the base moves (between episodes) in the Multiview version. See, for example, manipulator_learning/sim/envs/thing_door.py.

Panda Environments

Our panda environments contain several of the same tasks as our Thing environments. Additionally, we have a set of "play" environments that are multi-task.

Current environment list

['PandaPlayXYZState', 
'PandaPlayInsertTrayXYZState', 
'PandaPlayInsertTrayDPGripXYZState', 
'PandaPlayInsertTrayPlusPickPlaceXYZState', 
'PandaLiftXYZState', 
'PandaBringXYZState', 
'PandaPickAndPlaceAirGoal6DofState', 
'PandaReachXYZState', 
'PandaStackXYZState',
'ThingInsertImage', 
'ThingInsertMultiview', 
'ThingPickAndInsertSucDoneImage', 
'ThingPickAndInsertSucDoneMultiview',
'ThingPickAndPlaceXYState', 
'ThingPickAndPlacePrevPosXYState', 
'ThingPickAndPlaceGripPosXYState', 
'ThingPickAndPlaceXYZState', 
'ThingPickAndPlaceGripPosXYZState', 
'ThingPickAndPlaceAirGoalXYZState', 
'ThingPickAndPlace6DofState', 
'ThingPickAndPlace6DofLongState', 
'ThingPickAndPlace6DofSmallState', 
'ThingPickAndPlaceAirGoal6DofState', 
'ThingBringXYZState',
'ThingLiftXYZStateMultiview',
'ThingLiftXYZState', 
'ThingLiftXYZMultiview', 
'ThingLiftXYZImage', 
'ThingPickAndPlace6DofSmallImage', 
'ThingPickAndPlace6DofSmall160120Image', 
'ThingPickAndPlace6DofSmallMultiview', 
'ThingSort2Multiview', 
'ThingSort3Multiview', 
'ThingPushingXYState', 
'ThingPushingXYImage', 
'ThingPushing6DofMultiview', 
'ThingReachingXYState', 
'ThingReachingXYImage', 
'ThingStackImage', 
'ThingStackMultiview', 
'ThingStackSmallMultiview', 
'ThingStackSameMultiview', 
'ThingStackSameMultiviewV2', 
'ThingStackSameImageV2', 
'ThingStack3Multiview', 
'ThingStackTallMultiview', 
'ThingDoorImage', 
'ThingDoorMultiview']

Roadmap

  • Make environment generation compatible with gym.make
  • Documentation for environments and options for customization
  • Add imitation learning/data collection code
  • Fix bug that timesteps remaining on rendered window takes an extra step to update
Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022