Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

Overview

PatchNets

This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details, we refer to our project page, which also includes supplemental videos.

This code requires a functioning installation of DeepSDF, which can then be modified using the provided files.

(Optional) Making ShapeNet V1 Watertight

If you want to use ShapeNet, please follow these steps:

  1. Download Occupancy Networks
  2. On Linux, follow the installation steps from there:
conda env create -f environment.yaml
conda activate mesh_funcspace
python setup.py build_ext --inplace
  1. Install the four external dependencies from external/mesh-fusion:
    • for libfusioncpu and libfusiongpu, run cmake and then setup.py
    • for libmcubes and librender, run setup.py
  2. Replace the original OccNet files with the included slightly modified versions. This mostly switches to using .obj instead of .off
  3. Prepare the original Shapenet meshes by copying all objs as follows: from 02858304/1b2e790b7c57fc5d2a08194fd3f4120d/model.obj to 02858304/1b2e790b7c57fc5d2a08194fd3f4120d.obj
  4. Use generate_watertight_meshes_and_sample_points() from useful_scripts.py. Needs to be run twice, see comment at generate_command.
  5. On a Linux machine with display, activate mesh_funcspace
  6. Run the generated command.sh. Note: this preprocessing crashes frequently because some meshes cause issues. They need to be deleted.

Preprocessing

During preprocessing, we generate SDF samples from obj files.

The C++ files in src/ are modified versions of the corresponding DeepSDF files. Please follow the instruction on the DeepSDF github repo to compile these. Then run preprocess_data.py. There is a special flag in preprocess_data.py for easier handling of ShapeNet. There is also an example command for preprocessing ShapeNet in the code comments. If you want to use depth completion, add the --randomdepth and --depth flags to the call to preprocess_data.py.

Training

The files in code/ largely follow DeepSDF and replace the corresponding files in your DeepSDF installation. Note that some legacy functions from these files might not be compatible with PatchNets.

  • Some settings files are available in code/specs/. The training/test splits can be found in code/examples/splits/. The DataSource and, if used, the patch_network_pretrained_path and pretrained_depth_encoder_weights need to be adapted.
  • Set a folder that collects all experiments in code/localization/SystemSpecific.py.
  • The code uses code/specs.json as the settings file. Replace this file with the desired settings file.
  • The code creates a results folder, which also includes a backup. This is necessary to later run the evaluation script.
  • Throughout the code, metadata refers to patch extrinsics.
  • mixture_latent_mode can be set to all_explicit for normal PatchNets mode or to all_implicit for use with object latents.
    • Some weights automatically change in deep_sdf_decoder.py depending on whether all_explicit or all_implicit is used.
  • For all_implicit/object latents, please set sdf_filename under use_precomputed_bias_init in deep_sdf_decoder.py to an .npz file that was obtained via Preprocessing and for which initialize_mixture_latent_vector() from train_deep_sdf.py has been run (e.g. by including it in the training set and training a normal PatchNet). MixtureCodeLength is the object latent size and PatchCodeLength is the size of each of the regressed patch codes.
  • For all_explicit/normal PatchNets, MixtureCodeLength needs to be compatible with PatchCodeLength. Set MixtureCodeLength = (PatchCodeLength + 7) x num_patches. The 7 comes from position (3) + rotation (3) + scale (1). Always use 7, regardless of whether scale and/or rotation are used. Consider keeping the patch extrinsics fixed at their initial values instead of optimizing them with the extrinsics loss, see the second stage of StagedTraining.
  • When using staged training, NumEpochs and the total Lengths of each Staged schedule should be equal. Also note that both Staged schedules should have the exact same Lengths list.

Evaluation

  1. Fit PatchNets to test data: Use train_deep_sdf.py to run the trained network on the test data. Getting the patch parameters for a test set is almost the same workflow as training a network, except that the network weights are initialized and then kept fixed and a few other settings are changed. Please see included test specs.json for examples. In all cases, set test_time = True, train_patch_network = False, train_object_to_patch = False. Set patch_network_pretrained_path in the test specs.json to the results folder of the trained network. Make sure that ScenesPerBatch is a multiple of the test set size. Adjust the learning rate schedules according to the test specs.json examples included.
  2. Get quantitative evaluation: Use evaluate_patch_network_metrics() from useful_scripts.py with the test results folder. Needs to be run twice, see comment at generate_meshes. Running this script requires an installation of Occupancy Networks, see comments in evaluate_patch_network_metrics(). It also requires the obj files of the dataset that were used for Preprocessing.

Applications, Experiments, and Mesh Extraction

useful_scripts.py contains code for the object latent applications from Sec. 4.3: latent interpolation, the generative model and depth completion. The depth completion code contains a mode for quantitative evaluation. useful_scripts.py also contains code to extract meshes.

code/deep_sdf/data.py contains the code snippet used for the synthetic noise experiments in Sec. 7 of the supplementary material.

Additional Functionality

The code contains additional functionalities that are not part of the publication. They might work but have not been thoroughly tested and can be removed.

  • wrappers to allow for easy interaction with a trained network (do not remove, required to run evaluation)
    • _setup_torch_network() in useful_scripts.py
  • a patch encoder
    • Instead of autodecoding a patch latent code, it is regressed from SDF point samples that lie inside the patch.
    • Encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a depth encoder
    • A depth encoder maps from one depth map to all patch parameters.
    • use_depth_encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a tiny PatchNet version
    • The latent code is reshaped and used as network weights, i.e. there are no shared weights between different patches.
    • dims in specs.json should be set to something small like [ 8, 8, 8, 8, 8, 8, 8 ]
    • use_tiny_patchnet in specs.json
    • Requires to set PatchLatentCode correctly, the desired value is printed by _initialize_tiny_patchnet() in deep_sdf_decoder.py.
  • a hierarchical representation
    • Represents/encodes a shape using large patches for simple regions and smaller patches for complex regions of the geometry.
    • hierarchical_representation() in useful_scripts.py. Never tested. Later changes to the network code might also have broken something.
  • simplified curriculum weighting from Curriculum DeepSDF
    • use_curriculum_weighting in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • positional encoding from NeRF
    • positional_encoding in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • a Neural ODE deformation model for patches
    • Instead of a simple MLP regressing the SDF value, a velocity field first deforms the patch region and then the z-value of the final xyz position is returned as the SDF value. Thus the field flattens the surface to lie in the z=0 plane. Very slow due to Neural ODE. Might be useful to get UV maps/a direct surface parametrization.
    • use_ode and time_dependent_ode in specs.json. Additional parameters are in train_deep_sdf.py.
  • a mixed representation that has explicit patch latent codes and only regresses patch extrinsics from an object latent code
    • Set mixture_latent_mode in specs.json to patch_explicit_meta_implicit. posrot_latent_size is the size of the object latent code in this case. mixture_to_patch_parameters is the network that regresses the patch extrinsics. Check that this works as intended, later changes to the code might have broken something.

Citation

This code builds on DeepSDF. Please consider citing DeepSDF and PatchNets if you use this code.

@article{Tretschk2020PatchNets, 
    author = {Tretschk, Edgar and Tewari, Ayush and Golyanik, Vladislav and Zollh\"{o}fer, Michael and Stoll, Carsten and Theobalt, Christian}, 
    title = "{PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations}", 
    journal = {European Conference on Computer Vision (ECCV)}, 
    year = "2020" 
} 
@InProceedings{Park_2019_CVPR,
    author = {Park, Jeong Joon and Florence, Peter and Straub, Julian and Newcombe, Richard and Lovegrove, Steven},
    title = {DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}

License

Please note that this code is released under an MIT licence, see LICENCE. We have included and modified third-party components, which have their own licenses. We thank all of the respective authors for releasing their code, especially the team behind DeepSDF!

Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
LIAO Shuiying 6 Dec 01, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022