Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

Overview

PatchNets

This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details, we refer to our project page, which also includes supplemental videos.

This code requires a functioning installation of DeepSDF, which can then be modified using the provided files.

(Optional) Making ShapeNet V1 Watertight

If you want to use ShapeNet, please follow these steps:

  1. Download Occupancy Networks
  2. On Linux, follow the installation steps from there:
conda env create -f environment.yaml
conda activate mesh_funcspace
python setup.py build_ext --inplace
  1. Install the four external dependencies from external/mesh-fusion:
    • for libfusioncpu and libfusiongpu, run cmake and then setup.py
    • for libmcubes and librender, run setup.py
  2. Replace the original OccNet files with the included slightly modified versions. This mostly switches to using .obj instead of .off
  3. Prepare the original Shapenet meshes by copying all objs as follows: from 02858304/1b2e790b7c57fc5d2a08194fd3f4120d/model.obj to 02858304/1b2e790b7c57fc5d2a08194fd3f4120d.obj
  4. Use generate_watertight_meshes_and_sample_points() from useful_scripts.py. Needs to be run twice, see comment at generate_command.
  5. On a Linux machine with display, activate mesh_funcspace
  6. Run the generated command.sh. Note: this preprocessing crashes frequently because some meshes cause issues. They need to be deleted.

Preprocessing

During preprocessing, we generate SDF samples from obj files.

The C++ files in src/ are modified versions of the corresponding DeepSDF files. Please follow the instruction on the DeepSDF github repo to compile these. Then run preprocess_data.py. There is a special flag in preprocess_data.py for easier handling of ShapeNet. There is also an example command for preprocessing ShapeNet in the code comments. If you want to use depth completion, add the --randomdepth and --depth flags to the call to preprocess_data.py.

Training

The files in code/ largely follow DeepSDF and replace the corresponding files in your DeepSDF installation. Note that some legacy functions from these files might not be compatible with PatchNets.

  • Some settings files are available in code/specs/. The training/test splits can be found in code/examples/splits/. The DataSource and, if used, the patch_network_pretrained_path and pretrained_depth_encoder_weights need to be adapted.
  • Set a folder that collects all experiments in code/localization/SystemSpecific.py.
  • The code uses code/specs.json as the settings file. Replace this file with the desired settings file.
  • The code creates a results folder, which also includes a backup. This is necessary to later run the evaluation script.
  • Throughout the code, metadata refers to patch extrinsics.
  • mixture_latent_mode can be set to all_explicit for normal PatchNets mode or to all_implicit for use with object latents.
    • Some weights automatically change in deep_sdf_decoder.py depending on whether all_explicit or all_implicit is used.
  • For all_implicit/object latents, please set sdf_filename under use_precomputed_bias_init in deep_sdf_decoder.py to an .npz file that was obtained via Preprocessing and for which initialize_mixture_latent_vector() from train_deep_sdf.py has been run (e.g. by including it in the training set and training a normal PatchNet). MixtureCodeLength is the object latent size and PatchCodeLength is the size of each of the regressed patch codes.
  • For all_explicit/normal PatchNets, MixtureCodeLength needs to be compatible with PatchCodeLength. Set MixtureCodeLength = (PatchCodeLength + 7) x num_patches. The 7 comes from position (3) + rotation (3) + scale (1). Always use 7, regardless of whether scale and/or rotation are used. Consider keeping the patch extrinsics fixed at their initial values instead of optimizing them with the extrinsics loss, see the second stage of StagedTraining.
  • When using staged training, NumEpochs and the total Lengths of each Staged schedule should be equal. Also note that both Staged schedules should have the exact same Lengths list.

Evaluation

  1. Fit PatchNets to test data: Use train_deep_sdf.py to run the trained network on the test data. Getting the patch parameters for a test set is almost the same workflow as training a network, except that the network weights are initialized and then kept fixed and a few other settings are changed. Please see included test specs.json for examples. In all cases, set test_time = True, train_patch_network = False, train_object_to_patch = False. Set patch_network_pretrained_path in the test specs.json to the results folder of the trained network. Make sure that ScenesPerBatch is a multiple of the test set size. Adjust the learning rate schedules according to the test specs.json examples included.
  2. Get quantitative evaluation: Use evaluate_patch_network_metrics() from useful_scripts.py with the test results folder. Needs to be run twice, see comment at generate_meshes. Running this script requires an installation of Occupancy Networks, see comments in evaluate_patch_network_metrics(). It also requires the obj files of the dataset that were used for Preprocessing.

Applications, Experiments, and Mesh Extraction

useful_scripts.py contains code for the object latent applications from Sec. 4.3: latent interpolation, the generative model and depth completion. The depth completion code contains a mode for quantitative evaluation. useful_scripts.py also contains code to extract meshes.

code/deep_sdf/data.py contains the code snippet used for the synthetic noise experiments in Sec. 7 of the supplementary material.

Additional Functionality

The code contains additional functionalities that are not part of the publication. They might work but have not been thoroughly tested and can be removed.

  • wrappers to allow for easy interaction with a trained network (do not remove, required to run evaluation)
    • _setup_torch_network() in useful_scripts.py
  • a patch encoder
    • Instead of autodecoding a patch latent code, it is regressed from SDF point samples that lie inside the patch.
    • Encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a depth encoder
    • A depth encoder maps from one depth map to all patch parameters.
    • use_depth_encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a tiny PatchNet version
    • The latent code is reshaped and used as network weights, i.e. there are no shared weights between different patches.
    • dims in specs.json should be set to something small like [ 8, 8, 8, 8, 8, 8, 8 ]
    • use_tiny_patchnet in specs.json
    • Requires to set PatchLatentCode correctly, the desired value is printed by _initialize_tiny_patchnet() in deep_sdf_decoder.py.
  • a hierarchical representation
    • Represents/encodes a shape using large patches for simple regions and smaller patches for complex regions of the geometry.
    • hierarchical_representation() in useful_scripts.py. Never tested. Later changes to the network code might also have broken something.
  • simplified curriculum weighting from Curriculum DeepSDF
    • use_curriculum_weighting in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • positional encoding from NeRF
    • positional_encoding in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • a Neural ODE deformation model for patches
    • Instead of a simple MLP regressing the SDF value, a velocity field first deforms the patch region and then the z-value of the final xyz position is returned as the SDF value. Thus the field flattens the surface to lie in the z=0 plane. Very slow due to Neural ODE. Might be useful to get UV maps/a direct surface parametrization.
    • use_ode and time_dependent_ode in specs.json. Additional parameters are in train_deep_sdf.py.
  • a mixed representation that has explicit patch latent codes and only regresses patch extrinsics from an object latent code
    • Set mixture_latent_mode in specs.json to patch_explicit_meta_implicit. posrot_latent_size is the size of the object latent code in this case. mixture_to_patch_parameters is the network that regresses the patch extrinsics. Check that this works as intended, later changes to the code might have broken something.

Citation

This code builds on DeepSDF. Please consider citing DeepSDF and PatchNets if you use this code.

@article{Tretschk2020PatchNets, 
    author = {Tretschk, Edgar and Tewari, Ayush and Golyanik, Vladislav and Zollh\"{o}fer, Michael and Stoll, Carsten and Theobalt, Christian}, 
    title = "{PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations}", 
    journal = {European Conference on Computer Vision (ECCV)}, 
    year = "2020" 
} 
@InProceedings{Park_2019_CVPR,
    author = {Park, Jeong Joon and Florence, Peter and Straub, Julian and Newcombe, Richard and Lovegrove, Steven},
    title = {DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}

License

Please note that this code is released under an MIT licence, see LICENCE. We have included and modified third-party components, which have their own licenses. We thank all of the respective authors for releasing their code, especially the team behind DeepSDF!

OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021