LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

Overview

LightHuBERT

LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

| Github | Huggingface | SUPERB Leaderboard |

The authors' PyTorch implementation and pretrained models of LightHuBERT.

Pre-Trained Models

Model Pre-Training Dataset Download Link
LightHuBERT Base 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_base.pt
LightHuBERT Small 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_small.pt
LightHuBERT Stage 1 960 hrs LibriSpeech huggingface: lighthubert/lighthubert_stage1.pt

Actually, the pre-trained is trained in common.fp16: true so that we can perform model inference with fp16 weights.

Requirements and Installation

  • PyTorch version >= 1.8.1
  • Python version >= 3.6
  • numpy version >= 1.19.3
  • To install lighthubert:
git clone [email protected]:mechanicalsea/lighthubert.git
cd lighthubert
pip install --editable .

Load Pre-Trained Models for Inference

import torch
from lighthubert import LightHuBERT, LightHuBERTConfig

wav_input_16khz = torch.randn(1,10000).cuda()

# load the pre-trained checkpoints
checkpoint = torch.load('/path/to/lighthubert.pt')
cfg = LightHuBERTConfig(checkpoint['cfg']['model'])
cfg.supernet_type = 'base'
model = LightHuBERT(cfg)
model = model.cuda()
model = model.eval()
print(model.load_state_dict(checkpoint['model'], strict=False))

# (optional) set a subnet
subnet = model.supernet.sample_subnet()
model.set_sample_config(subnet)
params = model.calc_sampled_param_num()
print(f"subnet (Params {params / 1e6:.0f}M) | {subnet}")

# extract the the representation of last layer
rep = model.extract_features(wav_input_16khz)[0]

# extract the the representation of each layer
hs = model.extract_features(wav_input_16khz, ret_hs=True)[0]

print(f"Representation at bottom hidden states: {torch.allclose(rep, hs[-1])}")

More examples can be found in our tutorials.

Universal Representation Evaluation on SUPERB

SUPERB Leaderboard

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are based on the FAIRSEQ project.

Reference

If you find our work is useful in your research, please cite the following paper:

@article{wang2022lighthubert,
  title={{LightHuBERT}: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit {BERT}},
  author={Rui Wang and Qibing Bai and Junyi Ao and Long Zhou and Zhixiang Xiong and Zhihua Wei and Yu Zhang and Tom Ko and Haizhou Li},
  journal={arXiv preprint arXiv:2203.15610},
  year={2022}
}

Contact Information

For help or issues using LightHuBERT models, please submit a GitHub issue.

For other communications related to LightHuBERT, please contact Rui Wang ([email protected]).

Owner
WangRui
make improvement
WangRui
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023