Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Overview

Event Sourced Bank

A "wide but shallow" example of using the Python event sourcing library. "Wide" in the sense that it covers most features in the library; "shallow" in the sense that the use of each is trivial. It's purpose is not to be an authentic bank: it's to demonstrate the various library components in an example where the domain model itself affords no learning curve.

Overview

The domain model is simple. It comprises only 2 classes, both in the domain model file. Account models a trivial bank account as an event-sourced Domain-Driven Design Aggregate. Ledger is an equally simple abstraction of a ledger, again modelled as a DDD Aggregate.

The idea is that all transactions on all accounts get recorded in the ledger:

  • Each transaction on each account generates an event;
  • The ledger listens to those events, and is updated accordingly.

Implementation

The Account and Ledger aggregates are implemented using the eventsourcing library's Aggregate base class.

Each aggregate is wrapped in a service. The AccountService uses the eventsourcing library's Application class, and provides an API for creating/retrieving accounts and then acting on them. The LedgerService is implemented using the library's ProcessApplication. Its purpose is to follow all transactions on all accounts, so a single ledger tracks the overall balance in the bank.

The EventSourcedBank class ties everything together. It wires the AccountService and LedgerService together, so transactions on Accounts are recorded in the Ledger. There's a minimal main that creates a system and runs a few transactions through.

Snapshots

The eventsourcing lib reconstructs aggregates from the events that create and evolve them. That's consistent with the fundamental notion of event sourcing: store the events that change state over time, rather than storing the current state directly. It can, however, give rise to a performance problem with long-running aggregates. Each time an aggregate is retrieved - such as the calls to repository.get(account_id) in the AccountService - the aggregate is re-constructed from its event history. That history grown monotonically over time. Reconstructing the aggregate therefore takes proportionally longer as the aggregate evolves.

The library provides snapshots as a way to deal with this issue. It's as the name suggests; snapshots store the aggregate's state at given points. Re-constructing from a snapshot therefore removes the need to iterate over history prior to the snapshot being taken. Snapshots are well explained in the docs so not worth repeating here. Suffice to say there are various options that cover the spectrum from simple defaults to highly configurable options.

Given that this example intends to be "wide and shallow", it's appropriate to include the snapshotting construct. It's equally appropriate to use the simplest thing that could possibly work. Hence each of the services (AccountService, LedgerService) employ automatic snapshotting. That's enabled by a single line of code in each class; e.g.

  class AccountService(Application):
     snapshotting_intervals = {Account: 50}

Installation

  1. Clone this repo:

     $ cd /my/projects/dir
     $ git clone https://github.com/sfinnie/event_sourced_bank.git
     $ cd event_sourced_bank
    
  2. (optional but recommended): create a virtual environment:

     $ python3 -m venv venv
     $ source venv/bin/activate
    
  3. Install dependencies

     $ python3 -m pip install -U pip
     $ python3 -m pip install eventsourcing pytest
    

Running

There's a minimal, trivial, script to run the app:

$ python3 main.py

Testing

There are a few tests, more as examples than a comprehensive test suite at the moment. To be enhanced. To run:

$ pytest
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022