DIP-football - A football video analyse system based on Yolov5, alphapose, Qt6

Overview

足球视频分析系统

作者

简介

本项目是SJTU 21-22学年CS386 数字图像处理课程的大作业,本文是足球视频分析系统的参考文档。我们主要实现了以下功能:

  1. 基于Yolo v5和PastaNet搭建了足球视频的分析神经网络,能够对球员位置、球员姿态和动作进行识别,也能对球队战术进行初步识别
  2. 基于Qt6搭建了一套足球分析系统,包括服务端和客户端:客户端上传视频到服务端,分析完成后再下载结果并展示

使用方法

  • 服务端:

    1. 需要一台装有NVIDIA20系列显卡,并且装有cuda10.2的Linux电脑(如果你打算用CPU运行神经网络,没有显卡也可以)
    2. 配置python环境,输入conda env create -n activity2vec -f DIP/HAKE-Action-Torch-Activity2Vec/activity2vec.yamlconda env create -n yolo -f DIP/Yolov5_DeepSort_Pytorch/yolo.yaml
    3. 在Linux环境下用Qt6编译src/server-console/server-console.pro,如果是在docker中,那么还需用ldd命令找到所需的库文件,将编译好的可执行文件和库文件一起拷贝到docker
    4. 修改DIP文件夹下面三个.sh脚本,将其中的$PYTHON_PATH改成自己conda环境中对应的python位置
    5. 将编译好的server-console放到DIP文件夹下,运行之
  • 客户端:

    1. 下载并安装Qt6
    2. 用Qt6打开src/layouts/basiclayouts.pro,编译之
    3. DIP/GUI中的get_place.py打包成get_place.exe,并与第二步编译好的文件放在同一目录下
    4. 运行第二步编译好的文件

文件夹

DIP  神经网络方面
|-- GUI            人工校准GUI
|-- inputfile      输入文件
|-- Yolov5_DeepSort_Pytorch
|-- HAKE-Action-Torch-Activity2Vec
...

src  图像界面方面
|-- layouts        客户端
|-- server-console 服务端

report 报告

注意

  • 我们在此处没有提供全套DIP文件夹,它足足有7.2G,您可以根据下面的链接下载环境

    链接: https://pan.baidu.com/s/1PiAyDIr59o5IvgcjAnUylw  密码: 0gso
    --来自百度网盘超级会员V5的分享
    

Football Video Analyse System

Introduction

This project is a major assignment of cs386 digital image processing course of SJTU 21-22 academic year. This tutorial is a reference document for football video analysis system. We mainly realize the following functions:

  1. We build a football video analysis neural network, which can identify the player's position, player's posture and action, and also preliminarily identify the team's tactics.
  2. We construct a football analysis system based on Qt-6, including server and client: the client uploads the video to the server, downloads the results and displays them after analysis.

Usage

  • Server:

    1. You need a CUDA 10.2 Linux computer with NVIDIA 20 series graphics card (If you plan to run neural networks with CPU, you can do it without a graphics card)
    2. Build the python environment, enter conda env create -n activity2vec -f DIP/HAKE-Action-Torch-Activity2Vec/activity2vec.yaml and conda env create -n yolo -f DIP/Yolov5_DeepSort_Pytorch/yolo.yaml
    3. Compile src/server-console/server-console.pro in Linux Qt6. If you decide to run it in docker, you also need ldd command to find the required library, then copy the executable file and the library to docker
    4. Modify the three .sh script in folder DIP, change $PYTHON_PATH to the corresponding Python location in your conda environment
    5. Put the executable server-console into the DIP folder, then run it
  • Client:

    1. Download and install Qt6
    2. Open src/layouts/basiclayouts.pro with Qt6, then compile it
    3. Pack the DIP/GUI/get_place.py to get_place.exe and put it in the same directory as the files compiled in step 2
    4. Run the file compiled in step 2

Directory

DIP  # about neural network
|-- GUI            # calibrate GUI
|-- inputfile      
|-- Yolov5_DeepSort_Pytorch
|-- HAKE-Action-Torch-Activity2Vec
...

src  # about GUI
|-- layouts        # client
|-- server-console # server

report 报告

Note

  • We don't provide a full set of DIP folders here. It takes up 7.2G of space. You can download the environment according to the link below:

    URL: https://pan.baidu.com/s/1PiAyDIr59o5IvgcjAnUylw
    password: 0gso
    
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023