DIP-football - A football video analyse system based on Yolov5, alphapose, Qt6

Overview

足球视频分析系统

作者

简介

本项目是SJTU 21-22学年CS386 数字图像处理课程的大作业,本文是足球视频分析系统的参考文档。我们主要实现了以下功能:

  1. 基于Yolo v5和PastaNet搭建了足球视频的分析神经网络,能够对球员位置、球员姿态和动作进行识别,也能对球队战术进行初步识别
  2. 基于Qt6搭建了一套足球分析系统,包括服务端和客户端:客户端上传视频到服务端,分析完成后再下载结果并展示

使用方法

  • 服务端:

    1. 需要一台装有NVIDIA20系列显卡,并且装有cuda10.2的Linux电脑(如果你打算用CPU运行神经网络,没有显卡也可以)
    2. 配置python环境,输入conda env create -n activity2vec -f DIP/HAKE-Action-Torch-Activity2Vec/activity2vec.yamlconda env create -n yolo -f DIP/Yolov5_DeepSort_Pytorch/yolo.yaml
    3. 在Linux环境下用Qt6编译src/server-console/server-console.pro,如果是在docker中,那么还需用ldd命令找到所需的库文件,将编译好的可执行文件和库文件一起拷贝到docker
    4. 修改DIP文件夹下面三个.sh脚本,将其中的$PYTHON_PATH改成自己conda环境中对应的python位置
    5. 将编译好的server-console放到DIP文件夹下,运行之
  • 客户端:

    1. 下载并安装Qt6
    2. 用Qt6打开src/layouts/basiclayouts.pro,编译之
    3. DIP/GUI中的get_place.py打包成get_place.exe,并与第二步编译好的文件放在同一目录下
    4. 运行第二步编译好的文件

文件夹

DIP  神经网络方面
|-- GUI            人工校准GUI
|-- inputfile      输入文件
|-- Yolov5_DeepSort_Pytorch
|-- HAKE-Action-Torch-Activity2Vec
...

src  图像界面方面
|-- layouts        客户端
|-- server-console 服务端

report 报告

注意

  • 我们在此处没有提供全套DIP文件夹,它足足有7.2G,您可以根据下面的链接下载环境

    链接: https://pan.baidu.com/s/1PiAyDIr59o5IvgcjAnUylw  密码: 0gso
    --来自百度网盘超级会员V5的分享
    

Football Video Analyse System

Introduction

This project is a major assignment of cs386 digital image processing course of SJTU 21-22 academic year. This tutorial is a reference document for football video analysis system. We mainly realize the following functions:

  1. We build a football video analysis neural network, which can identify the player's position, player's posture and action, and also preliminarily identify the team's tactics.
  2. We construct a football analysis system based on Qt-6, including server and client: the client uploads the video to the server, downloads the results and displays them after analysis.

Usage

  • Server:

    1. You need a CUDA 10.2 Linux computer with NVIDIA 20 series graphics card (If you plan to run neural networks with CPU, you can do it without a graphics card)
    2. Build the python environment, enter conda env create -n activity2vec -f DIP/HAKE-Action-Torch-Activity2Vec/activity2vec.yaml and conda env create -n yolo -f DIP/Yolov5_DeepSort_Pytorch/yolo.yaml
    3. Compile src/server-console/server-console.pro in Linux Qt6. If you decide to run it in docker, you also need ldd command to find the required library, then copy the executable file and the library to docker
    4. Modify the three .sh script in folder DIP, change $PYTHON_PATH to the corresponding Python location in your conda environment
    5. Put the executable server-console into the DIP folder, then run it
  • Client:

    1. Download and install Qt6
    2. Open src/layouts/basiclayouts.pro with Qt6, then compile it
    3. Pack the DIP/GUI/get_place.py to get_place.exe and put it in the same directory as the files compiled in step 2
    4. Run the file compiled in step 2

Directory

DIP  # about neural network
|-- GUI            # calibrate GUI
|-- inputfile      
|-- Yolov5_DeepSort_Pytorch
|-- HAKE-Action-Torch-Activity2Vec
...

src  # about GUI
|-- layouts        # client
|-- server-console # server

report 报告

Note

  • We don't provide a full set of DIP folders here. It takes up 7.2G of space. You can download the environment according to the link below:

    URL: https://pan.baidu.com/s/1PiAyDIr59o5IvgcjAnUylw
    password: 0gso
    
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022