Framework for evaluating ANNS algorithms on billion scale datasets.

Overview

Billion-Scale ANN

http://big-ann-benchmarks.com/

Install

The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Python as well but probably requires an updated requirements.txt on the host. (Suggestion: copy requirements.txt to requirements${PYTHON_VERSION}.txt and remove all fixed versions. requirements.txt has to be kept for the docker containers.)

  1. Clone the repo.
  2. Run pip install -r requirements.txt (Use requirements_py38.txt if you have Python 3.8.)
  3. Install docker by following instructions here. You might also want to follow the post-install steps for running docker in non-root user mode.
  4. Run python install.py to build all the libraries inside Docker containers.

Storing Data

The framework assumes that all data is stored in data/. Please use a symlink if your datasets and indices are supposed to be stored somewhere else. The location of the linked folder matters a great deal for SSD-based search performance in T2. A local SSD such as the one found on Azure Ls-series VMs is better than remote disks, even premium ones. See T1/T2 for more details.

Data sets

See http://big-ann-benchmarks.com/ for details on the different datasets.

Dataset Preparation

Before running experiments, datasets have to be downloaded. All preparation can be carried out by calling

python create_dataset.py --dataset [bigann-1B | deep-1B | text2image-1B | ssnpp-1B | msturing-1B | msspacev-1B]

Note that downloading the datasets can potentially take many hours.

For local testing, there exist smaller random datasets random-xs and random-range-xs. Furthermore, most datasets have 1M, 10M and 100M versions, run python create_dataset -h to get an overview.

Running the benchmark

Run python run.py --dataset $DS --algorithm $ALGO where DS is the dataset you are running on, and ALGO is the name of the algorithm. (Use python run.py --list-algorithms) to get an overview. python run.py -h provides you with further options.

The parameters used by the implementation to build and query the index can be found in algos.yaml.

Running the track 1 baseline

After running the installation, we can evaluate the baseline as follows.

for DS in bigann-1B  deep-1B  text2image-1B  ssnpp-1B  msturing-1B  msspacev-1B;
do
    python run.py --dataset $DS --algorithm faiss-t1;
done

On a 28-core Xeon E5-2690 v4 that provided 100MB/s downloads, carrying out the baseline experiments took roughly 7 days.

To evaluate the results, run

sudo chmod -R 777 results/
python data_export.py --output res.csv
python3.8 eval/show_operating_points.py --algorithm faiss-t1 --threshold 10000

Including your algorithm and Evaluating the Results

See Track T1/T2 for more details on evaluation for Tracks T1 and T2.

See Track T3 for more details on evaluation for Track T3.

Credits

This project is a version of ann-benchmarks by Erik Bernhardsson and contributors targetting billion-scale datasets.

Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022