pytorch implementation of dftd2 & dftd3

Overview

torch-dftd

pytorch implementation of dftd2 [1] & dftd3 [2, 3]

Install

# Install from pypi
pip install torch-dftd

# Install from source (for developers)
git clone https://github.com/pfnet-research/torch-dftd
pip install -e .

Quick start

from ase.build import molecule
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator

atoms = molecule("CH3CH2OCH3")
# device="cuda:0" for fast GPU computation.
calc = TorchDFTD3Calculator(atoms=atoms, device="cpu", damping="bj")

energy = atoms.get_potential_energy()
forces = atoms.get_forces()

print(f"energy {energy} eV")
print(f"forces {forces}")

Dependency

The library is tested under following environment.

  • python: 3.6
  • CUDA: 10.2
torch==1.5.1
ase==3.21.1
# Below is only for 3-body term
cupy-cuda102==8.6.0
pytorch-pfn-extras==0.3.2

Development tips

Formatting & Linting

pysen is used to format the python code of this repository.
You can simply run below to get your code formatted :)

# Format the code
$ pysen run format
# Check the code format
$ pysen run lint

CUDA Kernel function implementation with cupy

cupy supports users to implement CUDA kernels within python code, and it can be easily linked with pytorch tensor calculations.
Element wise kernel is implemented and used in some pytorch functions to accelerate speed with GPU.

See document for details about user defined kernel.

Citation

Please always cite original paper of DFT-D2 [1] or DFT-D3 [2, 3], if you used this software for your publication.

DFT-D2:
[1] S. Grimme, J. Comput. Chem, 27 (2006), 1787-1799. DOI: 10.1002/jcc.20495

DFT-D3:
[2] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys, 132 (2010), 154104. DOI: 10.1063/1.3382344

If BJ-damping is used in DFT-D3:
[3] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem, 32 (2011), 1456-1465. DOI: 10.1002/jcc.21759

Comments
  • [WIP] Cell-related gradient modifications

    [WIP] Cell-related gradient modifications

    I found that the current implementation has several performance issues regarding gradient wrt. cell. This PR modifies that. Since the changes are relatively much, I will put some comments.

    Change summary:

    • Use shift for gradient instead of cell.
    • shift is now length scale instead cell unit.
    • Calculate Voigt notation style stress directly

    Also, this PR contains bugfix related to sked cell.

    bug enhancement 
    opened by So-Takamoto 1
  • Raise Error with single atom inputs.

    Raise Error with single atom inputs.

    When the length of atoms is 1, the routine raises error.

    from ase.build import molecule
    from ase.calculators.dftd3 import DFTD3
    from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
    
    if __name__ == "__main__":
        atoms = molecule("H")
        # device="cuda:0" for fast GPU computation.
        calc = TorchDFTD3Calculator(atoms=atoms, device="cpu", damping="bj")
    
        energy = atoms.get_potential_energy()
        forces = atoms.get_forces()
    
        print(f"energy {energy} eV")
        print(f"forces {forces}")
    
    
    Traceback (most recent call last):
      File "quick.py", line 12, in <module>
        energy = atoms.get_potential_energy()
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/atoms.py", line 731, in get_potential_energy
        energy = self._calc.get_potential_energy(self)
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/calculators/calculator.py", line 709, in get_potential_energy
        energy = self.get_property('energy', atoms)
      File "/home/ahayashi/torch-dftd/torch_dftd/torch_dftd3_calculator.py", line 141, in get_property
        dftd3_result = Calculator.get_property(self, name, atoms, allow_calculation)
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/calculators/calculator.py", line 737, in get_property
        self.calculate(atoms, [name], system_changes)
      File "/home/ahayashi/torch-dftd/torch_dftd/torch_dftd3_calculator.py", line 119, in calculate
        results = self.dftd_module.calc_energy(**input_dicts, damping=self.damping)[0]
      File "/home/ahayashi/torch-dftd/torch_dftd/nn/base_dftd_module.py", line 75, in calc_energy
        E_disp = self.calc_energy_batch(
      File "/home/ahayashi/torch-dftd/torch_dftd/nn/dftd3_module.py", line 86, in calc_energy_batch
        E_disp = d3_autoev * edisp(
      File "/home/ahayashi/torch-dftd/torch_dftd/functions/dftd3.py", line 189, in edisp
        c6 = _getc6(Zi, Zj, nci, ncj, c6ab=c6ab, k3=k3)  # c6 coefficients
      File "/home/ahayashi/torch-dftd/torch_dftd/functions/dftd3.py", line 97, in _getc6
        k3_rnc = torch.where(cn0 > 0.0, k3 * r, -1.0e20 * torch.ones_like(r)).view(n_edges, -1)
    RuntimeError: cannot reshape tensor of 0 elements into shape [0, -1] because the unspecified dimension size -1 can be any value and is ambiguous
    
    opened by AkihideHayashi 1
  • use shift for gradient calculation instead of cell

    use shift for gradient calculation instead of cell

    I found that the current implementation has several performance issues regarding gradient wrt. cell. This PR modifies it. Since the changes are relatively much, I will put some comments.

    Change summary:

    • Use shift for gradient instead of cell.
    • shift is now length scale instead cell unit.
    • Calculate Voigt notation style stress directly

    Also, this PR contains bugfix related to sked cell.

    bug enhancement 
    opened by So-Takamoto 0
  • Bugfix: batch calculation with abc=True

    Bugfix: batch calculation with abc=True

    I found that test function test_calc_energy_force_stress_device_batch_abc unintentionally ignores abc argument.

    This PR modified related implementation to work it.

    In addition, corner case correspondence when the total number of atom is zero is also added. (n_graphs cannot be calculated from batch_edge when len(batch_edge) == 0.)

    bug 
    opened by So-Takamoto 0
  • Fixed a bug for inputs with 0 adjacencies.

    Fixed a bug for inputs with 0 adjacencies.

    The _gettc6 routine now works correctly even when the number of adjacencies is 0. Instead of calling calc_neighbor_by_pymatgen when the number of atoms is 0 and the periodic boundary condition, it now return edge_index, S for adjacency 0. In my environment, using the result of torch.sum for the size of torch.zeros caused an error, so I changed it to cast the result of sum to int.

    bug 
    opened by AkihideHayashi 0
  •  Bug in test for stress

    Bug in test for stress

    In test_torch_dftd3_calculator.py/_assert_energy_force_stress_equal, there is a code below.

        if np.all(atoms.pbc == np.array([True, True, True])):
            s1 = atoms.get_stress()
            s2 = atoms.get_stress()
            assert np.allclose(s1, s2, atol=1e-5, rtol=1e-5)
    

    This code cannot compare the results of stresses of calc1 and calc2. Both s1 and s2 are the stress of calc2.

    opened by AkihideHayashi 0
Releases(v0.3.0)
  • v0.3.0(Apr 25, 2022)

    This is the release note of v0.3.0.

    Highlights

    • use shift for gradient calculation instead of cell #13 (Thank you @So-Takamoto )
      • It includes 1. speed up of stress calculation for batch atoms, and 2. bug fix for stress calculation when cell is skewed.
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Sep 4, 2021)

    This is the release note of v0.2.0.

    Highlights

    • Add PFP citation in README.md #2
    • Use pymatgen for pbc neighbor search speed up #3

    Bug fixes

    • Fixed a bug for inputs with 0 adjacencies. #6 (Thank you @AkihideHayashi )
    • Remove RuntimeError on no-cupy environment #8 (Thank you @So-Takamoto )
    • Bugfix: batch calculation with abc=True #9 (Thank you @So-Takamoto )

    Others

    • move pysen to develop dependency #10 (Thank you @So-Takamoto )
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 10, 2021)

This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022