Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

Related tags

Deep LearningFGR
Overview

FGR

This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(ICRA 2021)[arXiv]

Installation

Prerequisites

  • Python 3.6
  • scikit-learn, opencv-python, numpy, easydict, pyyaml
conda create -n FGR python=3.6
conda activate FGR
pip install -r requirements.txt

Usage

Data Preparation

Please download the KITTI 3D object detection dataset from here and organize them as follows:

${Root Path To Your KITTI Dataset}
├── data_object_image_2
│   ├── training
│   │   └── image_2
│   └── testing (optional)
│       └── image_2
│
├── data_object_label_2
│   └── training
│       └── label_2
│
├── data_object_calib
│   ├── training
│   │   └── calib
│   └── testing (optional)
│       └── calib
│
└── data_object_velodyne
    ├── training
    │   └── velodyne
    └── testing (optional)
        └── velodyne

Retrieving psuedo labels

Stage I: Coarse 3D Segmentation

In this stage, we get coarse 3D segmentation mask for each car. Please run the following command:

cd FGR
python save_region_grow_result.py --kitti_dataset_dir ${Path To Your KITTI Dataset} --output_dir ${Path To Save Region-Growth Result}
  • This Python file uses multiprocessing.Pool, which requires the number of parallel processes to execute. Default process is 8, so change this number by adding extra parameter "--process ${Process Number You Want}" in above command if needed.
  • The space of region-growth result takes about 170M, and the execution time is about 3 hours when using process=8 (default)

Stage II: 3D Bounding Box Estimation

In this stage, psuedo labels with KITTI format will be calculated and stored. Please run the following command:

cd FGR
python detect.py --kitti_dataset_dir ${Path To Your KITTI Dataset} --final_save_dir ${Path To Save Psuedo Labels} --pickle_save_path ${Path To Save Region-Growth Result}
  • The multiprocessing.Pool is also used, with default process 16. Change it by adding extra parameter "--process ${Process Number}" in above command if needed.
  • Add "--not_merge_valid_labels" to ignore validation labels. We only create psuedo labels in training dataset, for further testing deep models, we simply copy groundtruth validation labels to saved path. If you just want to preserve training psuedo, please add this parameter
  • Add "--save_det_image" if you want to visualize the estimated bbox (BEV). The visualization results will be saved in "final_save_dir/image".
  • One visualization sample is drawn in different colors:
    • white points indicate the coarse 3D segmentation of the car
    • cyan lines indicate left/right side of frustum
    • green point indicates the key vertex
    • yellow lines indicate GT bbox's 2D projection
    • purple box indicates initial estimated bounding box
    • red box indicates the intersection based on purple box, which is also the 2D projection of final estimated 3D bbox

We also provide final pusedo training labels and GT validation labels in ./FGR/detection_result.zip. You can directly use them to train the model.

Use psuedo labels to train 3D detectors

1. Getting Startted

Please refer to the OpenPCDet repo here and complete all the required installation.

After downloading the repo and completing all the installation, a small modification of original code is needed:

--------------------------------------------------
pcdet.datasets.kitti.kitti_dataset:
1. line between 142 and 143, add: "if len(obj_list) == 0: return None"
2. line after 191, delete "return list(infos)", and add:

final_result = list(infos)
while None in final_result:
    final_result.remove(None)
            
return final_result
--------------------------------------------------

This is because when creating dataset, OpenPCDet (the repo) requires each label file to have at least one valid label. In our psuedo labels, however, some bad labels will be removed and the label file may be empty.

2. Data Preparation

In this repo, the KITTI dataset storage is as follows:

data/kitti
├── testing
│   ├── calib
│   ├── image_2
│   └── velodyne
└── training
    ├── calib
    ├── image_2
    ├── label_2
    └── velodyne

It's different from our dataset storage, so we provide a script to construct this structure based on symlink:

sh create_kitti_dataset_new_format.sh ${Path To KITTI Dataset} ${Path To OpenPCDet Directory}

3. Start training

Please remove the symlink of 'training/label_2' temporarily, and add a new symlink to psuedo label path. Then follow the OpenPCDet instructions and train PointRCNN models.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{wei2021fgr,
  title={{FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection}},
  author={Wei, Yi and Su, Shang and Lu, Jiwen and Zhou, Jie},
  booktitle={ICRA},
  year={2021}
}
Owner
Yi Wei
Yi Wei
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022