Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Overview

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Paper: arXiv (ICRA 2021)

Video : https://youtu.be/CCDms7KWgI8

System figure


Shared resources


Testing / Evaluation

  1. Setup repository
    • Download test dataset, floorplans and pretrained model to <data>, <floorplan>, and <model> folders.
    • Download this repository. Copy source/sample_data_paths.json as source/data_paths.json and specify default paths.
    • For next steps, we will show example commands for one test datafile. See relevant code for more configuration options.
  2. IMU and WiFi Fusion by Optimization
    • Run source/optim/optimizer.py to geolocalize trajectory with floorplan
    • Sample command: python optimizer.py --out_dir <optimize_out_dir> --data_path <data_folder_path> --loop --no_gui --map_path <path_to_map_image> --map_latlong_path <path_to_csv_with_image_latlong_mapping>
    • E.g. : python optimizer.py --out_dir <output>/optim_s1 --data_path <data>/a001_d1_metrotown_0g --map_path <floorplan>/metrotown_0g.png --loop --no_gui
  3. Floorplan fusion by CNN
    • Run source/nn/nn_eval_full_traj.py for CNN prediction.
    • Sample command: python nn_eval_full_traj.py --floorplan_dir <directory_with_floorplan_images> --floorplan_dpi <floorplan_resolution> --input_dpi <resolution_suitable_for_network> --test_path <optimize_out_dir/data_folder> --out_dir <flow_out_dir> --model_path <fusion_dhl_cnn_checkpoint>
    • E.g. : python nn_eval_full_traj.py --floorplan_dir <floorplan> --test_path <output>/optim_s1/a001_d1_metrotown_0g --out_dir <output>/flow_s1 --model_path <model>/ckpt_fusion_dhl_unet.pt
  4. Run second iteration of optimization with prediction of 2.
    • Run source/optim/optimizer_with_flow.py
    • Sample command: python optimizer_with_flow.py --out_dir <optimize2_out_dir> --data_path <data_folder_path> --map_path <path_to_map_image> --result_dir <flow_out_dir> --loop --no_gui
    • E.g.: python optimizer_with_flow.py --out_dir <output>/optim_s2 --data_path <data>/a001_d1_metrotown_0g --map_path <floorplan>/metrotown_0g.png --result_dir <output>/flow_s1/output/full_result --loop --no_gui
  5. Repeat step 2 with results of 3 as test path --test_path <optimize2_out_dir/data_folder>
    • E.g.: python nn_eval_full_traj.py --floorplan_dir <floorplan> --test_path <output>/optim_s2/a001_d1_metrotown_0g --out_dir <output>/flow_s2 --model_path <model>/ckpt_fusion_dhl_unet.pt

Using your own dataset

The data collection, pre-processing and training steps are listed below. After completion, run testing/evaluation steps with the relevant paths

Data collection

  1. Create floorplan image according to the speicifed format and a known resolution. (Resolution must be chosen in such a way that cropped squares of size 250 by 250 pixel from the floorplan image have multiple rooms/corridors in them. The bigger the rooms, the smaller pixel/meter. We chose 2.5 pixels per meter for the shared dataset which are from shopping malls)
  2. Install Custom Maps app from apk or source and create map by aligning floorplan with google maps
    • During data collection, select map of current floorplan and manually click the current location at sparse points for evaluation.
  3. Put floorplans for training set, and floorplans for test purpose in separate folders and copy source/sample_map_info.json as map_info.json in these folders and specify the floorplan and image names.
  4. Install Sensor Data Logger app and click start service to record data
    • disable battery optimization for the app upon installation
    • location, WiFi and bluetooth needs to be switched on for data collection.
  5. Copy Sensor_Data_Logger output (in Downloads) to computer. Copy relevant Custom_Maps output files (in Downloads/mapLocalize) to a new folder named map inside the copied folder.

Data Preprocessing

  1. Download this repository. Copy source/sample_data_paths.json as source/data_paths.json and specify default paths.
  2. Download RoNIN resnet model checkpoint from the website
  3. Run source/preprocessing/compile_dataset.py to preprocess data into synced data streams and save as hdf5 files.
  4. Generate synthetic data (for training CNN)
    • Run source/gui/synthetic_data_generator.py to generate synthetic data by hand-drawing paths on a map
    • E.g. python synthetic_data_generator.py <path_to_map_image> --map_dpi <pixels_per_meter> --out_dir <path_to_directory> --add_noise
  5. For training groundtruth, run source/optim/optimizer with gui and manually specify constraints (if necessary) until the trajectory looks correct. (command in testing/evaluation)

Floorplan fusion by CNN

  1. Preprocess training data:
    • run source/nn/data_generator_train_real.py and source/nn/data_generator_train_syn.py with mode argument to generate real and synthetic dataset suitable for training the Neural Network. Please refer to the source code for the full list of command line arguments. Change _dpi to the pixel per meter resolution of your floorplan image.
    • Example command for real data generation: python3 data_generator_train_real.py --run_type 'full' --save_all_figs True --data_dir <path-to-real-data-folder> --datalist_file <path-to-list-of-real-data> --floorplans_dir <path-to-train-floorplans> --out_dir <path-to-output-real-dataset-folder>.
    • Example command for synthetic data generation: python3 data_generator_train_syn.py --save_all_figs True --data_dir <path-to-synthetic-data-folder-for-specific-floorplan> --datalist_file <path-to-list-of-synthetic-data-for-specific-floorplan> --floorplans_dir <path-to-floorplans> --out_dir <path-to-output-synthetic-dataset-folder> --which_mall <name-of-the-specific-floorplan>.
  2. Training
    • Run source/nn/nn_train.py to train or test the CNN. Please refer to the source code for the full list of command line arguments and their descriptions.
    • E.g. command for training: python3 nn_train.py --real_floorplans <path_to_real_data's_floorplans> --real_train_list <path_to_real_train_data_list> --real_val_list <path_to_real_validation_data_list> --real_dataset <path_to_real_dataset_from_previous_part> --syn_floorplans <path_to_synthetic_data's_floorplans> --syn_train_list <path_to_synthetic_train_data_list> --syn_val_list <path_to_synthetic_validation_data_list> --syn_dataset <path_to_synthetic_dataset_from_previous_part> --out_dir <path_to_outputs> --mode 'train'
    • E.g. command for testing: python3 nn_train.py --real_floorplans <path_to_real_data's_floorplans> --real_test_list <path_to_real_test_data_list> --real_dataset <path_to_real_dataset_from_previous_part> --syn_floorplans <path_to_synthetic_data's_floorplans> --syn_test_list <path_to_synthetic_test_datalist> --syn_dataset <path_to_synthetic_dataset_from_previous_part> --out_dir <path_to_outputs> --mode <'test_plot_flow'/'test_plot_traj'> --continue_from <path_to_saved_model>
    • Pretrained model

Citation

Please cite the following paper is you use the code, paper, data or any shared resources:

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments
Sachini Herath, Saghar Irandoust, Bowen Chen, Yiming Qian, Pyojin Kim and Yasutaka Furukawa
2021 IEEE International Conference on Robotics and Automation (ICRA) 
Owner
Sachini Herath
Sachini Herath
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022