## Petfinder Pawpularity Score Prediction This notebook implements a deep regression model for the competition [Petfinder.my - Pawpularity Contest](https://www.kaggle.com/c/petfinder-pawpularity-score/overview). The problem basically consists of assigning a popularity score to images of pets up for adoption. The given data includes images of pets and their corresponding popularity scores from 0-100. We need design a model that predicts this score. Also given optinally are some binary metadata features about the pets in the images like: blur, occlusion, eye visibility etc. We currently do not use these optional features for our baseline model. We use timm to get our pre-trained backbones for resnet50 and swin transformers to be used as feature extractors. A novel method was developed to obtain an end-to-end deep regression model that converts score values to probability distributions and performs training using these prob. distribution labels, in order to get more gradient information backpropogated as compared to backpropogating just one output value. Detailed documentation in the notebook
Image-popularity-score - A novel deep regression method for image scoring.
Overview
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)
Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation
ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet
PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN
Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo
App for identification of various objects. Based on YOLO v4 tiny architecture
Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a
Gif-caption - A straightforward GIF Captioner written in Python
Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi
a baseline to practice
ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi
Evaluation framework for testing segmentation networks in PyTorch
Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba
Simple-Neural-Network From Scratch in Python
Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.
xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f
nnDetection is a self-configuring framework for 3D (volumetric) medical object detection which can be applied to new data sets without manual intervention. It includes guides for 12 data sets that were used to develop and evaluate the performance of the proposed method.
What is nnDetection? Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of hi
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo
Active and Sample-Efficient Model Evaluation
Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P
Tool for live presentations using manim
manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation
Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This
YOLOv7 - Framework Beyond Detection
🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥