Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Overview

Introduction

Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants.

This codebase contains two packages:

  1. anhp: Attentive-Neural Hawkes Process (A-NHP)
  2. andtt: Attentive-Neural Datalog Through Time (A-NDTT).

Author: Chenghao Yang ([email protected])

Reference

If you use this code as part of any published research, please acknowledge the following paper (it encourages researchers who publish their code!):

@article{yang-2021-transformer,
  author =      {Chenghao Yang and Hongyuan Mei and Jason Eisner},
  title =       {Transformer Embeddings of Irregularly Spaced Events and Their Participants},
  journal =     {arXiv preprint arxiv:2201.00044},
  year =        {2021}
}

Instructions

Here are the instructions to use the code base.

Dependencies and Installation

This code is written in Python 3, and I recommend you to install:

  • Anaconda that provides almost all the Python-related dependencies;

This project relies on Datalog Utilities in NDTT project, please first install it. (please remove the torch version (1.1.0) in setup.py of NDTT project, because that is not the requirement of this project and we only use non-pytorch part of NDTT. We recommend using torch>=1.7 for this project.).

Then run the command line below to install the package (add -e option if you need an editable installation):

pip install .

Dataset Preparation

Download datasets and programs from here.

Organize your domain datasets as follows:

domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA

(A-NDTT-only) Build Dynamic Databases

Go to the andtt/run directory.

To build the dynamic databases for your data, try the command line below for detailed guide:

python build.py --help

The generated dynamic model architectures (represented by database facts) are stored in this directory:

domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/tdbcache

Train Models

To train the model specified by your Datalog probram, try the command line below for detailed guide:

python train.py --help

The training log and model parameters are stored in this directory:

# A-NHP
domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/ContKVLogs
# A-NDTT
domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/Logs

Example command line for training:

# A-NHP
python train.py -d YOUR_DOMAIN -ps ../../ -bs BATCH_SIZE -me 50 -lr 1e-4 -d_model 32 -teDim 10 -sd 1111 -layer 1
# A-NDTT
python train.py -d YOUR_DOMAIN -db YOUR_PROGRAM -ps ../../ -bs BATCH_SIZE -me 50 -lr 1e-4 -d_model 32 -teDim 10 -sd 1111 -layer 1

Test Models

To test the trained model, use the command line below for detailed guide:

python test.py --help

Example command line for testing:

python test.py -d YOUR_DOMAIN -fn FOLDER_NAME -s test -sd 12345 -pred

To evaluate the model predictions, use the command line below for detailed guide:

python eval.py --help

Example command line for testing:

python eval.py -d YOUR_DOMAIN -fn FOLDER_NAME -s test

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

  1. The transformer component implementation used in this repo is based on widely-recognized Annotated Transformer.
  2. The code structure is inspired by Prof. Hongyuan Mei's Neural Datalog Through Time
Owner
Alan Yang
AWS Applied Scientist Intern. [email protected] CLSP; M.S. & RA @columbia; Ex-intern @IBM Watson; B.S.
Alan Yang
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022