This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

Overview

HiRID-ICU-Benchmark

This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

We first introduce key resources to better understand the structure and specificity of the data. We then detail the different features of our pipeline and how to use them as shown in the below figure.

Figure

Key Resources

We build our work on previously released data, models, and metrics. To help users which might be unfamiliar with them we provide in this section some related documentation.

HiRID data

We based our benchmark on a recent dataset in intensive care called HiRID. It is a freely accessible critical care dataset containing data from more than 33,000 patient admissions to the Department of Intensive Care Medicine, Bern University Hospital, Switzerland (ICU) from January 2008 to June 2016. It was first released as part of the circulatory Early Warning Score project.

First, you can find some more details about the demographics of the patients of the data in Appendix A: HiRID Dataset Details. However, for more details about the original data, it's better to refer to its latest documentation . More in detail the documentation contains the following sections of interest:

  • Getting started This first section points to a jupyter notebook to familiarize yourself with the data.
  • Data details This second section contains a description of the variables existing in the dataset. To complete this section you can refer to our varref.tsv which we use to build the common version of the data.
  • Structure of the published data This final section contains details about the structure of the raw data you will have to download and place in hirid-data-root folder (see "Run Pre-Processing").

Models

As for the data, in this benchmark, we compare existing machine learning models that are commonly used for multivariate time-series data. For these models' implementation we use pytorch, for the deep learning models, lightgbm for the boosted tree approaches, and sklearn for the logistic regression model and metrics. In the deep learning models we used the following models:

Metrics

In our benchmark we use different metrics depending on the tasks, however, all the implementations are from sklearn which documents well their usage:

Setup

In the following we assume a Linux installation, however, other platforms may also work

  1. Install Conda, see the official installation instructions
  2. clone this repository and change into the directory of the repository
  3. conda env update (creates an environment icu-benchmark)
  4. pip install -e .

Download Data

  1. Get access to the HiRID 1.1.1 dataset on physionet. This entails
    1. getting a credentialed physionet account
    2. submit a usage request to the data depositor
  2. Once access is granted, download the following files
    1. reference_data.tar.gz
    2. observation_tables_parquet.tar.gz
    3. pharma_records_parquet.tar.gz
  3. unpack the files into the same directory using e.g. cat *.tar.gz | tar zxvf - -i

How to Run

Run Prepocessing

Activate the conda environment using conda activate icu-benchmark. Then

icu-benchmarks preprocess --hirid-data-root [path to unpacked parquet files as downloaded from phyiosnet] \
                          --work-dir [output directory] \
                          --var-ref-path ./preprocessing/resources/varref.tsv \
                          --split-path ./preprocessing/resources/split.tsv \
                          --nr-workers 8

The above command requires about 6GB of RAM per core and in total approximately 30GB of disk space.

Run Training

Custom training

To run a custom training you should, activate the conda environment using conda activate icu-benchmark. Then

icu-benchmarks train -c [path to gin config] \
                     -l [path to logdir] \
                     -t [task name] \
                     -sd [seed number] 

Task name should be one of the following: Mortality_At24Hours, Dynamic_CircFailure_12Hours, Dynamic_RespFailure_12Hours, Dynamic_UrineOutput_2Hours_Reg, Phenotyping_APACHEGroup or Remaining_LOS_Reg.\ To see an example of gin-config file please refer to ./configs/. You can also check directly the gin-config documentation. this will create a new directory [path to logdir]/[task name]/[seed number]/ containing:

  • val_metrics.pkl and test_metrics.pkl: Pickle files with model's performance respectively validation and test sets.
  • train_config.gin: The so-called "operative" config allowing the save the configuration used at training.
  • model.(torch/txt/joblib) : The weights of the model that was trained. The extension depends model type.
  • tensorboard/: (Optional) Directory with tensorboard logs. One can do tensorboard --logdir ./tensorboard to visualize them,

Reproduce experiments from the paper

If you are interested in reproducing the experiments from the paper, you can directly use the pre-built scripts in ./run_scripts/. For instance, you can run the following command to reproduce the GRU baseline on the Mortality task:

sh run_script/baselines/Mortality_At24Hours/GRU.sh

As for custom training, you will create a directory with the files mentioned above. The pre-built scripts are divided into four categories as follows:

  • baselines: This folder contains scripts to reproduce the main benchmark experiment. Each of them will run a model with the best parameters we found using a random search for 10 identical seeds.
  • ablations: This folder contains the scripts to reproduce the ablations studies on the horizon, sequence length, and weighting.
  • random-search: This script will run each one instance of a random search. This means if you want a k-run search you need to run it k times.
  • pretrained: This last type of script allows us to evaluate pretrain models from our experiments. We discuss them more in detail in the next section

Run Evaluation of Pretrained Models

Custom Evaluation

As for training a model, you can evaluate any previously trained model using the evaluate as follows:

icu-benchmarks evaluate -c [path to gin config] \
                        -l [path to logdir] \
                        -t [task name] \

This command will evaluate the model at [path to logdir]/[task name]/model.(torch/txt/joblib) on the test set of the dataset provided in the config. Results are saved to test_metrics.pkl file.

Evaluate Manuscript models

To either check the pre-processing pipeline outcome or simply reproduce the paper results we provided weights for all models of the benchmark experiment in files/pretrained_weights. Please note that the data items in this repository utilize the git-lfs framework. You need to install git-lfs on your system to be able to download and access the pretrained weights.

Once this is done you can evaluate any network by running :

sh ./run_scripts/pretrained/[task name]/[model name].sh

Note that we provide only one set of weights for each model which corresponds to the median performance among the 10 runs reported in the manuscript.

Run Pipeline on Simulated Data

We provide a small toy data set to test the processing pipeline and to get a rough impression how to original data looks like. Since there are restrictions accessing the HiRID data set, instead of publishing a small subset of the data, we generated a very simple simulated dataset based on some statistics aggregated from the full HiRID dataset. It is however not useful for data exploration or training, as for example the values are sampled independently from each other and any structure between variables in the original data set is not represented.

The example data set is provided in files/fake_data. Similar as with the original data, the preprocessing pipeline can be run using

icu-benchmarks preprocess --hirid-data-root files/fake_data --work-dir fake_data_wdir --var-ref-path preprocessing/resources/varref.tsv

Note, that for this fake dataset some models cannot be successfully trained, as the training instances are degenerate. In case you'd like to explore the training part of our pipeline, you could work with pretrained models as described above.

Dataset Generation

The data set was generated using the following command:

python -m icu_benchmarks.synthetic_data.generate_simple_fake_data files/dataset_stats/ files/fake_data/ --var-ref-path preprocessing/resources/varref.tsv

The script generate_simple_fake_data.py generates fake observation and pharma records in the following way: It first generates a series of timestamps where the difference between consecutive timestamps is sampled from the distribution of timestamp differences in the original dataset. Then, for every timestamp, a variableid/pharmaid is selected at random also according to the distribution in the original dataset. Finally, we sample the values of a variable from a gaussian with mean and standard deviation as observed in the original data. We then clip the values to fit the lower and upperbound as given in the varref table.

The necessary statistics for sampling can be found in files/dataset_stats. They were generated using

python -m icu_benchmarks.synthetic_data.collect_stats [Path to the decompressed parquet data directory as published on physionet] files/dataset_stats/

License

You can find the license for the original HiRID data here. For our code we license it under a MIT License

Owner
Biomedical Informatics at ETH Zurich
Biomedical Informatics at ETH Zurich
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022