RP-GAN: Stable GAN Training with Random Projections

Overview

RP-GAN: Stable GAN Training with Random Projections

Interpolated images from our GAN

This repository contains a reference implementation of the algorithm described in the paper:

Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti, "Stabilizing GAN Training with Multiple Random Projections," arXiv:1705.07831 [cs.LG], 2017.

Pre-trained generator models are not included in the repository due to their size, but are available as binary downloads as part of the release. This code and data is being released for research use. If you use the code in research that results in a publication, we request that you kindly cite the above paper. Please direct any questions to [email protected].

Requirements

The code uses the tensorflow library, and has been tested with versions 0.9 and 0.11 with both Python2 and Python3. You will need a modern GPU for training in a reasonable amount of time, but the sampling code should work on a CPU.

Sampling with Trained Models

We first describe usage of scripts for sampling from trained models. You can use these scripts for models you train yourself, or use the provided pre-trained models.

Pre-trained Models

We provide a number of pre-trained models in the release, corresponding to the experiments in the paper. The parameters of each model (both for training and sampling) are described in .py files the exp/ directory. face1.py describes a face image model trained in the traditional setting with a single discriminator, while faceNN.py are models trained with multiple discriminators each acting on one of NN random low-dimensional projections. face48.py describes the main face model used in our experiments, while dog12.py is the model trained with 12 discriminators on the Imagenet-Canines set. After downloading the trained model archive files, unzip them in the repository root directory. This should create files in sub-directories of models/.

Generating Samples

Use sample.py to generate samples using any of trained models as:

$ ./sample.py expName[,seed] out.png [iteration]

where expName is the name of the experiment file (without the .py extension), and out.png is the file to save the generated samples to. The script accepts optional parameters: seed (default 0) specifies the random seed used to generate the noise vectors provided to the generator, and iteration (default: max iteration available as saved file) specifies which model file to use in case multiple snapshots are available. E.g.,

$ ./sample.py face48 out.png      # Sample from the face48 experiment, using 
                                  # seed 0, and the latest model file.
$ ./sample.py face48,100 out.png  # Sample from the face48 experiment, using
                                  # seed 100, and the latest model file.
$ ./sample.py face1 out.png       # Sample from the single discriminator face
                                  # experiment, and the latest model file.
$ ./sample.py face1 out.png 40000 # Sample from the single discriminator face
                                  # experiment, and the 40k iterations model.
Interpolating in Latent Space

We also provide a script to produce interpolated images like the ones at the top of this page. However, before you can use this script, you need to create a version of the model file that contains the population mean-variance statistics of the activations to be used in batch-norm la(sample.py above uses batch norm statistics which is fine since it is working with a large batch of noise vectors. However, for interpolation, you will typically be working with smaller, more correlated, batches, and therefore should use batch statistics).

To create this version of the model file, use the provided script fixbn.py as:

$ CUDA_VISIBLE_DEVICES= ./fixbn.py expName [iteration]

This will create a second version of the model weights file (with extension .bgmodel.npz instead of .gmodel.npz) that also stores the batch statistics. Like for sample.py, you can provide a second optional argument to specify a specific model snapshot corresponding to an iteration number.

Note that we call the script with CUDA_VISIBLE_DEVICES= to force tensorflow to use the CPU instead of the GPU. This is because we compute these stats over a relatively large batch which typically doesn't fit in GPU memory (and since it's only one forward pass, running time isn't really an issue).

You only need to call fixbn.py once, and after that, you can use the script interp.py to create interpolated samples. The script will generate multiple rows of images, each producing samples from noise vectors interpolated between a pair from left-to-right. The script lets you specify these pairs of noise vectors as IDs:

$ ./interp.py expName[,seed[,iteration]] out.png lid,rid lid,rid ....

The first parameter now has two optional comma-separated arguments beyond the model name for seed and iteration. After this and the output file name, it agrees an arbitrary number of pairs of left-right image IDs, for each row of desired images in the output. These IDs correspond to the number of the image, in reading order, in the output generated by sample.py (with the same seed). For example, to create the images at the top of the page, use:

$ ./interp.py face48 out.png 137,65 146,150 15,138 54,72 38,123 36,93

Training

To train your own model, you will need to create a new model file (say myown.py) in the exp/ directory. See the existing model files for reference. Here is an explanation of some of the key parameters:

  • wts_dir: Directory in which to store model weights. This directory must already exist.
  • imsz: Resolution / Size of the images (will be square color images of size imsz x imsz).
  • lfile: Path to a list file for the images you want to train on, where each line of the file contains a path to an image.
  • crop: Boolean (True or False). Indicates whether the images are already the correct resolution, or need to be cropped. If True, these images will first be resized so that the smaller side matches imsz, and then a random crop along the other dimension will be used for training.

Before you begin training, you will need to create a file called filts.npz which defines the convolutional filters for the random projections. See the filts/ directory for the filters used for the pre-trained models, as well as instructions on a script for creating your own. On

Once you have created the model file and prepared the directory, you can begin training by using the train.py script as:

$ ./train.py myown

where the first parameter is the name of your model file.

We also provide a script for traditional training---baseline_train.py---with a single discriminator acting on the original image. It is used in the same way, except it doesn't require a filts.npz file in the weights directory.


Acknowledgments

This work was supported by the National Science Foundation under award no. IIS-1820693. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the National Science Foundation.

You might also like...
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

This is the official implementation of the paper
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

TeST: Temporal-Stable Thresholding for Semi-supervised Learning
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

RL agent to play μRTS with Stable-Baselines3
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Self-driving car env with PPO algorithm from stable baseline3
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

Releases(v1.0)
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022