ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

Overview

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

This repository contains code, model, dataset for ChineseBERT at ACL2021.

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li

Guide

Section Description
Introduction Introduction to ChineseBERT
Download Download links for ChineseBERT
Quick tour Learn how to quickly load models
Experiment Experiment results on different Chinese NLP datasets
Citation Citation
Contact How to contact us

Introduction

We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining.

First, for each Chinese character, we get three kind of embedding.

  • Char Embedding: the same as origin BERT token embedding.
  • Glyph Embedding: capture visual features based on different fonts of a Chinese character.
  • Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character.

Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding.
Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model.
The following image shows an overview architecture of ChineseBERT model.

MODEL

ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.

Download

We provide pre-trained ChineseBERT models in Pytorch version and followed huggingFace model format.

  • ChineseBERT-base:12-layer, 768-hidden, 12-heads, 147M parameters
  • ChineseBERT-large: 24-layer, 1024-hidden, 16-heads, 374M parameters

Our model can be downloaded here:

Model Model Hub Size
ChineseBERT-base Pytorch 564M
ChineseBERT-large Pytorch 1.4G

Note: The model hub contains model, fonts and pinyin config files.

Quick tour

We train our model with Huggingface, so the model can be easily loaded.
Download ChineseBERT model and save at [CHINESEBERT_PATH].
Here is a quick tour to load our model.

>>> from models.modeling_glycebert import GlyceBertForMaskedLM

>>> chinese_bert = GlyceBertForMaskedLM.from_pretrained([CHINESEBERT_PATH])
>>> print(chinese_bert)

The complete example can be find here: Masked word completion with ChineseBERT

Another example to get representation of a sentence:

>>> from datasets.bert_dataset import BertDataset
>>> from models.modeling_glycebert import GlyceBertModel

>>> tokenizer = BertDataset([CHINESEBERT_PATH])
>>> chinese_bert = GlyceBertModel.from_pretrained([CHINESEBERT_PATH])
>>> sentence = '我喜欢猫'

>>> input_ids, pinyin_ids = tokenizer.tokenize_sentence(sentence)
>>> length = input_ids.shape[0]
>>> input_ids = input_ids.view(1, length)
>>> pinyin_ids = pinyin_ids.view(1, length, 8)
>>> output_hidden = chinese_bert.forward(input_ids, pinyin_ids)[0]
>>> print(output_hidden)
tensor([[[ 0.0287, -0.0126,  0.0389,  ...,  0.0228, -0.0677, -0.1519],
         [ 0.0144, -0.2494, -0.1853,  ...,  0.0673,  0.0424, -0.1074],
         [ 0.0839, -0.2989, -0.2421,  ...,  0.0454, -0.1474, -0.1736],
         [-0.0499, -0.2983, -0.1604,  ..., -0.0550, -0.1863,  0.0226],
         [ 0.1428, -0.0682, -0.1310,  ..., -0.1126,  0.0440, -0.1782],
         [ 0.0287, -0.0126,  0.0389,  ...,  0.0228, -0.0677, -0.1519]]],
       grad_fn=)

The complete code can be find HERE

Experiments

ChnSetiCorp

ChnSetiCorp is a dataset for sentiment analysis.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 95.4 95.5
BERT 95.1 95.4
BERT-wwm 95.4 95.3
RoBERTa 95.0 95.6
MacBERT 95.2 95.6
ChineseBERT 95.6 95.7
---- ----
RoBERTa-large 95.8 95.8
MacBERT-large 95.7 95.9
ChineseBERT-large 95.8 95.9

Training details and code can be find HERE

THUCNews

THUCNews contains news in 10 categories.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 95.4 95.5
BERT 95.1 95.4
BERT-wwm 95.4 95.3
RoBERTa 95.0 95.6
MacBERT 95.2 95.6
ChineseBERT 95.6 95.7
---- ----
RoBERTa-large 95.8 95.8
MacBERT-large 95.7 95.9
ChineseBERT-large 95.8 95.9

Training details and code can be find HERE

XNLI

XNLI is a dataset for natural language inference.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 79.7 78.6
BERT 79.0 78.2
BERT-wwm 79.4 78.7
RoBERTa 80.0 78.8
MacBERT 80.3 79.3
ChineseBERT 80.5 79.6
---- ----
RoBERTa-large 82.1 81.2
MacBERT-large 82.4 81.3
ChineseBERT-large 82.7 81.6

Training details and code can be find HERE

BQ

BQ Corpus is a sentence pair matching dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 86.3 85.0
BERT 86.1 85.2
BERT-wwm 86.4 85.3
RoBERTa 86.0 85.0
MacBERT 86.0 85.2
ChineseBERT 86.4 85.2
---- ----
RoBERTa-large 86.3 85.8
MacBERT-large 86.2 85.6
ChineseBERT-large 86.5 86.0

Training details and code can be find HERE

LCQMC

LCQMC Corpus is a sentence pair matching dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 89.8 87.2
BERT 89.4 87.0
BERT-wwm 89.6 87.1
RoBERTa 89.0 86.4
MacBERT 89.5 87.0
ChineseBERT 89.8 87.4
---- ----
RoBERTa-large 90.4 87.0
MacBERT-large 90.6 87.6
ChineseBERT-large 90.5 87.8

Training details and code can be find HERE

TNEWS

TNEWS is a 15-class short news text classification dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 58.24 58.33
BERT 56.09 56.58
BERT-wwm 56.77 56.86
RoBERTa 57.51 56.94
ChineseBERT 58.64 58.95
---- ----
RoBERTa-large 58.32 58.61
ChineseBERT-large 59.06 59.47

Training details and code can be find HERE

CMRC

CMRC is a machin reading comprehension task dataset.
Evaluation Metrics: EM

Model Dev Test
ERNIE 66.89 74.70
BERT 66.77 71.60
BERT-wwm 66.96 73.95
RoBERTa 67.89 75.20
MacBERT - -
ChineseBERT 67.95 95.7
---- ----
RoBERTa-large 70.59 77.95
ChineseBERT-large 70.70 78.05

Training details and code can be find HERE

OntoNotes

OntoNotes 4.0 is a Chinese named entity recognition dataset and contains 18 named entity types.

Evaluation Metrics: Span-Level F1

Model Test Precision Test Recall Test F1
BERT 79.69 82.09 80.87
RoBERTa 80.43 80.30 80.37
ChineseBERT 80.03 83.33 81.65
---- ---- ----
RoBERTa-large 80.72 82.07 81.39
ChineseBERT-large 80.77 83.65 82.18

Training details and code can be find HERE

Weibo

Weibo is a Chinese named entity recognition dataset and contains 4 named entity types.

Evaluation Metrics: Span-Level F1

Model Test Precision Test Recall Test F1
BERT 67.12 66.88 67.33
RoBERTa 68.49 67.81 68.15
ChineseBERT 68.27 69.78 69.02
---- ---- ----
RoBERTa-large 66.74 70.02 68.35
ChineseBERT-large 68.75 72.97 70.80

Training details and code can be find HERE

Contact

If you have any question about our paper/code/modal/data...
Please feel free to discuss through github issues or emails.
You can send email to [email protected] or [email protected]

Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
202 Jan 06, 2023
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022