Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Overview

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Preface

This directory provides an implementation of the algorithms used to compute the hypergeometric tail pseudo-inverse, as well as the code used to produce all figures of the paper "Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion" by Leboeuf, LeBlanc and Marchand.

Installation

To run the scripts, one must first install the package and its requirements. To do so, run the following command from the root directory:

pip install .

Doing so will also provide you with the package hypergeo, which implements an algorithm to compute the hypergeometric tail pseudo-inverses.

Requirements

The code was written to run on Python 3.8 or more recent version. The requirements are shown in the file requirements.txt and can be installed using the command:

pip install -r requirements.txt

The code

The code is split into 2 parts: the 'hypergeo' package and the 'scripts' directory.

The hypergeo package implements the utilities regarding the hypergeometric distribution (to compute the tail and its inverse), the binomial distribution (reimplementing the inverse as the scipy version suffered from numerical unstabilities) and some generalization bounds.

The scripts files produce the figures found in the paper using the hypergeo package. All figures are generated directly in LaTeX using the package python2latex. To run a script, navigate from the command line to the directory root directory of the project and run the command

/ .py" ">
python "./scripts/
     
      /
      
       .py"

      
     

The code does not provide command line control on the parameters of each script. However, each script is fairly simple, and parameters can be directly changed in the __main__ part of the script.

Scripts used in the body of the paper

  • Section 3.3: The ghost sample trade-off. In this section, we claim that optimizing m' gives relative gain between 8% and 10%. To obtain these number, you need to run the file mprime_tradeoff/generate_mprime_data.py to first generate the data, and then run mprime_tradeoff/stats.py.

  • Section 5: Numerical comparison. Figure 1a and 1b are obtain by executing the scripts bounds_comparison/bounds_comparison_risk.py and bounds_comparison/bounds_comparison_d.py respectively. Figure 2a and 2b are obtain by executing the scripts bounds_comparison/bounds_comparison_m.py, the first setting the variable risk to 0, the second by setting it equal to 0.1.

Scripts used in the appendices of the paper

  • Appendix B: Overview of the hypergeometric distribution. Figure 3 is generated from hypergeometric_tail/hyp_tail_plot.py. Figure 4 is generated from hypergeometric_tail/hyp_tail_inv_plot.py. Algorithm 1 is implemented in the hypergeo file hypergeo/hypergeometric_distribution.py as the function hypergeometric_tail_inverse. Algorithm 2 is implemented in the hypergeo file hypergeo/hypergeometric_distribution.py as the function berkopec_hypergeometric_tail_inverse.

  • Appendix D: In-depth analysis of the ghost sample trade-off. Figure 5 is generated from mprime_tradeoff/plot_epsilon_comp.py. Figure 6 is generated from mprime_tradeoff/plot_mprime_best.py.

  • Appendix E: The hypergeometric tail inversion relative deviation bound. To generate Figure 7 and 8, you must first run the file relative_deviation_mprime_tradeoff/mprime_tradeoff_relative_deviation.py to generate the data, then run the script relative_deviation_mprime_tradeoff/plot_epsilon_comp.py to produce Figure 7 and relative_deviation_comparison/plot_mprime_best.py to produce Figure 8.

  • Appendix G: The hypergeometric tail lower bound . Figure 9 is generated from lower_bound/lower_bound_comparison_risk.py.

  • Appendix F: Further numerical comparisons. Figure 10 and 12a are generated from bounds_comparison/bounds_comparison_risk.py by changing the parameters of the scripts. Figure 11 and 12b is generated from bounds_comparison/bounds_comparison_m.py by changing the parameters of the scripts. Figure 13a and 13b are generated from bounds_comparison/sample_compression_comparison_risk.py and bounds_comparison/sample_compression_comparison_m.py respectively.

Other

The script pseudo-inverse_benchmarking/pseudo-inverse_benchmarking.py benchmarks the various algorithms used to invert the hypergeometric tail. The 'tests' directory contains unit tests using the package pytest.

Owner
Jean-Samuel Leboeuf
PhD candidate in Computer Sciences (Machine Learning). MSc in Theoretical Physics.
Jean-Samuel Leboeuf
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022