Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Related tags

Deep LearningASMG
Overview

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

This is our experimental code for RecSys 2021 paper "Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems".

The paper is available here.
The video is available here.
The slide is available here.

Requirements

tensorflow 1.4.0
pandas
numpy

GPUs with memory >= 10GB

Data Preprocessing

The raw data can be obtained from:
Tmall Data data_format1
Sobazaar Data Data > Sobazaar-hashID.csv.gz
MovieLens Data ml-25m

To preprocess the above raw data, save them in the raw_data folder under the root directory, and do

cd preproc
python tmall_preproc.py
python soba_preproc.py
python ml_preproc.py

The preprocessed datasets will be saved in the datasets folder for later use.

Pretraining

To simulate the real-world applications, the first 10 periods of dataset are used to pretrain an initial Embedding&MLP base model, and all the compared model updating methods will restore from the same pretrained model.

To pretrain a model for Tmall/Sobazaar/MovieLens, do

cd Tmall/pretrain
python train_tmall.py

cd Sobazaar/pretrain
python train_soba.py

cd MovieLens/pretrain
python train_ml.py

The pretrained base model will be saved in Tmall/pretrain/ckpts, Sobazaar/pretrain/ckpts and MovieLens/pretrain/ckpts respectively.

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

Note: pretraining must be done before conducting any model updating method.

Baselines and Variants

All the compared model updating methods for a specific dataset are contained in the folder named by that dataset.

Our proposed method:
ASMGgru_multi

Baseline methods:
IU
BU
SPMF
IncCTR
SML
SMLmf

Variants of ASMGgru_multi:
ASMGgru_zero
ASMGgru_full
ASMGgru_single
(we do not create a separate folder for ASMGgru_uniform, as it can be easily implemented in ASMGgru_multi, see the code for more details)

To perform any of the ASMGgru methods, we need to first conduct a run of IU to generate the input model sequence.

For example, to perform a run of IU experiment for Tmall, do

cd Tmall/IU
python train_tmall.py

Then we can proceed to perform any of the ASMGgru methods

cd Tmall/ASMGgru_multi
python train_tmall.py

Other model updating methods can be conducted on their own without any pre-requisite.

Note that for SMLmf, since it is based on a different base model (i.e., Matrix Factorization), additional pretraining needs to be performed for this method.

cd Tmall/SMLmf/pretrain
python train_tmall.py

Then

cd Tmall/SMLmf/SML
python train_tmall.py

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

The evaluation results can be found from the path with the following format:

/ /ckpts/ / /test_metrics.txt

where is configured in train_config of the entry file, containing some essential hyper-parameter settings, and by default is date20141030 for Tmall and period30 for MovieLens and Sobazaar.

Here are some examples of the possible paths that the evaluation results may reside:

Tmall/ASMGgru_multi/ckpts/ASMGgru_multi_linear_train11-23_test24-30_4emb_4mlp_1epoch_3_0.01/date20141030/test_metrics.txt

MovieLens/IU/ckpts/IU_train11-23_test24-30_1epoch_0.001/period30/test_metrics.txt

Citation

If you find this repo useful in your research, please cite the following:

@inproceedings{peng2021learning,
  title={Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems},
  author={Peng, Danni and Pan, Sinno Jialin and Zhang, Jie and Zeng, Anxiang},
  booktitle={Fifteenth ACM Conference on Recommender Systems},
  pages={411--421},
  year={2021}
}
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022