Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Related tags

Deep LearningASMG
Overview

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

This is our experimental code for RecSys 2021 paper "Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems".

The paper is available here.
The video is available here.
The slide is available here.

Requirements

tensorflow 1.4.0
pandas
numpy

GPUs with memory >= 10GB

Data Preprocessing

The raw data can be obtained from:
Tmall Data data_format1
Sobazaar Data Data > Sobazaar-hashID.csv.gz
MovieLens Data ml-25m

To preprocess the above raw data, save them in the raw_data folder under the root directory, and do

cd preproc
python tmall_preproc.py
python soba_preproc.py
python ml_preproc.py

The preprocessed datasets will be saved in the datasets folder for later use.

Pretraining

To simulate the real-world applications, the first 10 periods of dataset are used to pretrain an initial Embedding&MLP base model, and all the compared model updating methods will restore from the same pretrained model.

To pretrain a model for Tmall/Sobazaar/MovieLens, do

cd Tmall/pretrain
python train_tmall.py

cd Sobazaar/pretrain
python train_soba.py

cd MovieLens/pretrain
python train_ml.py

The pretrained base model will be saved in Tmall/pretrain/ckpts, Sobazaar/pretrain/ckpts and MovieLens/pretrain/ckpts respectively.

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

Note: pretraining must be done before conducting any model updating method.

Baselines and Variants

All the compared model updating methods for a specific dataset are contained in the folder named by that dataset.

Our proposed method:
ASMGgru_multi

Baseline methods:
IU
BU
SPMF
IncCTR
SML
SMLmf

Variants of ASMGgru_multi:
ASMGgru_zero
ASMGgru_full
ASMGgru_single
(we do not create a separate folder for ASMGgru_uniform, as it can be easily implemented in ASMGgru_multi, see the code for more details)

To perform any of the ASMGgru methods, we need to first conduct a run of IU to generate the input model sequence.

For example, to perform a run of IU experiment for Tmall, do

cd Tmall/IU
python train_tmall.py

Then we can proceed to perform any of the ASMGgru methods

cd Tmall/ASMGgru_multi
python train_tmall.py

Other model updating methods can be conducted on their own without any pre-requisite.

Note that for SMLmf, since it is based on a different base model (i.e., Matrix Factorization), additional pretraining needs to be performed for this method.

cd Tmall/SMLmf/pretrain
python train_tmall.py

Then

cd Tmall/SMLmf/SML
python train_tmall.py

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

The evaluation results can be found from the path with the following format:

/ /ckpts/ / /test_metrics.txt

where is configured in train_config of the entry file, containing some essential hyper-parameter settings, and by default is date20141030 for Tmall and period30 for MovieLens and Sobazaar.

Here are some examples of the possible paths that the evaluation results may reside:

Tmall/ASMGgru_multi/ckpts/ASMGgru_multi_linear_train11-23_test24-30_4emb_4mlp_1epoch_3_0.01/date20141030/test_metrics.txt

MovieLens/IU/ckpts/IU_train11-23_test24-30_1epoch_0.001/period30/test_metrics.txt

Citation

If you find this repo useful in your research, please cite the following:

@inproceedings{peng2021learning,
  title={Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems},
  author={Peng, Danni and Pan, Sinno Jialin and Zhang, Jie and Zeng, Anxiang},
  booktitle={Fifteenth ACM Conference on Recommender Systems},
  pages={411--421},
  year={2021}
}
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021