Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Related tags

Deep LearningASMG
Overview

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

This is our experimental code for RecSys 2021 paper "Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems".

The paper is available here.
The video is available here.
The slide is available here.

Requirements

tensorflow 1.4.0
pandas
numpy

GPUs with memory >= 10GB

Data Preprocessing

The raw data can be obtained from:
Tmall Data data_format1
Sobazaar Data Data > Sobazaar-hashID.csv.gz
MovieLens Data ml-25m

To preprocess the above raw data, save them in the raw_data folder under the root directory, and do

cd preproc
python tmall_preproc.py
python soba_preproc.py
python ml_preproc.py

The preprocessed datasets will be saved in the datasets folder for later use.

Pretraining

To simulate the real-world applications, the first 10 periods of dataset are used to pretrain an initial Embedding&MLP base model, and all the compared model updating methods will restore from the same pretrained model.

To pretrain a model for Tmall/Sobazaar/MovieLens, do

cd Tmall/pretrain
python train_tmall.py

cd Sobazaar/pretrain
python train_soba.py

cd MovieLens/pretrain
python train_ml.py

The pretrained base model will be saved in Tmall/pretrain/ckpts, Sobazaar/pretrain/ckpts and MovieLens/pretrain/ckpts respectively.

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

Note: pretraining must be done before conducting any model updating method.

Baselines and Variants

All the compared model updating methods for a specific dataset are contained in the folder named by that dataset.

Our proposed method:
ASMGgru_multi

Baseline methods:
IU
BU
SPMF
IncCTR
SML
SMLmf

Variants of ASMGgru_multi:
ASMGgru_zero
ASMGgru_full
ASMGgru_single
(we do not create a separate folder for ASMGgru_uniform, as it can be easily implemented in ASMGgru_multi, see the code for more details)

To perform any of the ASMGgru methods, we need to first conduct a run of IU to generate the input model sequence.

For example, to perform a run of IU experiment for Tmall, do

cd Tmall/IU
python train_tmall.py

Then we can proceed to perform any of the ASMGgru methods

cd Tmall/ASMGgru_multi
python train_tmall.py

Other model updating methods can be conducted on their own without any pre-requisite.

Note that for SMLmf, since it is based on a different base model (i.e., Matrix Factorization), additional pretraining needs to be performed for this method.

cd Tmall/SMLmf/pretrain
python train_tmall.py

Then

cd Tmall/SMLmf/SML
python train_tmall.py

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

The evaluation results can be found from the path with the following format:

/ /ckpts/ / /test_metrics.txt

where is configured in train_config of the entry file, containing some essential hyper-parameter settings, and by default is date20141030 for Tmall and period30 for MovieLens and Sobazaar.

Here are some examples of the possible paths that the evaluation results may reside:

Tmall/ASMGgru_multi/ckpts/ASMGgru_multi_linear_train11-23_test24-30_4emb_4mlp_1epoch_3_0.01/date20141030/test_metrics.txt

MovieLens/IU/ckpts/IU_train11-23_test24-30_1epoch_0.001/period30/test_metrics.txt

Citation

If you find this repo useful in your research, please cite the following:

@inproceedings{peng2021learning,
  title={Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems},
  author={Peng, Danni and Pan, Sinno Jialin and Zhang, Jie and Zeng, Anxiang},
  booktitle={Fifteenth ACM Conference on Recommender Systems},
  pages={411--421},
  year={2021}
}
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022