Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Related tags

Deep LearningASMG
Overview

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

This is our experimental code for RecSys 2021 paper "Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems".

The paper is available here.
The video is available here.
The slide is available here.

Requirements

tensorflow 1.4.0
pandas
numpy

GPUs with memory >= 10GB

Data Preprocessing

The raw data can be obtained from:
Tmall Data data_format1
Sobazaar Data Data > Sobazaar-hashID.csv.gz
MovieLens Data ml-25m

To preprocess the above raw data, save them in the raw_data folder under the root directory, and do

cd preproc
python tmall_preproc.py
python soba_preproc.py
python ml_preproc.py

The preprocessed datasets will be saved in the datasets folder for later use.

Pretraining

To simulate the real-world applications, the first 10 periods of dataset are used to pretrain an initial Embedding&MLP base model, and all the compared model updating methods will restore from the same pretrained model.

To pretrain a model for Tmall/Sobazaar/MovieLens, do

cd Tmall/pretrain
python train_tmall.py

cd Sobazaar/pretrain
python train_soba.py

cd MovieLens/pretrain
python train_ml.py

The pretrained base model will be saved in Tmall/pretrain/ckpts, Sobazaar/pretrain/ckpts and MovieLens/pretrain/ckpts respectively.

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

Note: pretraining must be done before conducting any model updating method.

Baselines and Variants

All the compared model updating methods for a specific dataset are contained in the folder named by that dataset.

Our proposed method:
ASMGgru_multi

Baseline methods:
IU
BU
SPMF
IncCTR
SML
SMLmf

Variants of ASMGgru_multi:
ASMGgru_zero
ASMGgru_full
ASMGgru_single
(we do not create a separate folder for ASMGgru_uniform, as it can be easily implemented in ASMGgru_multi, see the code for more details)

To perform any of the ASMGgru methods, we need to first conduct a run of IU to generate the input model sequence.

For example, to perform a run of IU experiment for Tmall, do

cd Tmall/IU
python train_tmall.py

Then we can proceed to perform any of the ASMGgru methods

cd Tmall/ASMGgru_multi
python train_tmall.py

Other model updating methods can be conducted on their own without any pre-requisite.

Note that for SMLmf, since it is based on a different base model (i.e., Matrix Factorization), additional pretraining needs to be performed for this method.

cd Tmall/SMLmf/pretrain
python train_tmall.py

Then

cd Tmall/SMLmf/SML
python train_tmall.py

All the hyper-parameters can be easily configured in train_config at the beginning of each entry file (i.e., train_xxx.py).

The evaluation results can be found from the path with the following format:

/ /ckpts/ / /test_metrics.txt

where is configured in train_config of the entry file, containing some essential hyper-parameter settings, and by default is date20141030 for Tmall and period30 for MovieLens and Sobazaar.

Here are some examples of the possible paths that the evaluation results may reside:

Tmall/ASMGgru_multi/ckpts/ASMGgru_multi_linear_train11-23_test24-30_4emb_4mlp_1epoch_3_0.01/date20141030/test_metrics.txt

MovieLens/IU/ckpts/IU_train11-23_test24-30_1epoch_0.001/period30/test_metrics.txt

Citation

If you find this repo useful in your research, please cite the following:

@inproceedings{peng2021learning,
  title={Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems},
  author={Peng, Danni and Pan, Sinno Jialin and Zhang, Jie and Zeng, Anxiang},
  booktitle={Fifteenth ACM Conference on Recommender Systems},
  pages={411--421},
  year={2021}
}
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021