Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

Overview

Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

Download PDFAboutCreditsAuthorLicense


Download

Like my book? write a review on Amazon: https://www.amazon.com/Deep-Learning-Interviews-interview-questions/dp/1916243568/ref=tmm_pap_swatch_0?_encoding=UTF8&qid=&sr=

SELLING OR COMMERCIAL USE IS STRICTLY PROHIBITED. The user rights of this e-resource are specified in a licence agreement below. You may only use this e-resource for the purposes private study. Any selling/reselling of its content is strictly prohibited.

The PDF is available here:

https://drive.google.com/file/d/1EAgan7aewt7BjyaEoxnhDHMSuQP58Ii0/view?usp=sharing

This book (www.interviews.ai) was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the interview process is the most significant hurdle between you and a dream job. Even though you have the ability, the background, and the motivation to excel in your target position, you might need some guidance on how to get your foot in the door.

About

In AI, an elite group of researches such as the ones at Google DeepMind, are breaking scientific frontiers time and again. In quantitative algorithms, for instance, a handful of researchers who are at the top of the field can crack challenges that seem otherwise out of reach, developing models that drive future trading.

Those experts rely on years of experience and thorough understanding, and they’re fueled by their love of complex problems. Hedge funds do everything they can to attract top number crunchers longing to crack intractable challenges. If you are an aspiring data scientist, with a quantitative background and the gauntlet of the interviewing process dead ahead, you probably know that process is the most significant hurdle between you and a dream job somewhere in a startup or a branch of the big five. You have the ability, but you could use some guidance and preparation

What can it do for me?

The book’s contents is a large inventory of numerous topics relevant to DL job interviews and graduate-level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs:

  •  Hundreds of fully-solved problems
    
  • Problems from numerous areas of deep learning
    
  •  Clear diagrams and illustrations
    
  •  A comprehensive index
    
  •  Step-by-step solutions to problems
    
  •  Not just the answers given, but the work shown
    
  •  Not just the work shown, but reasoning given where appropriate
    

Core subject areas

Your curiosity will pull you through the book’s problem sets, formulas, and instructions, and as you progress, you’ll deepen your understanding of deep learning. The connections between calculus, logistic regression, entropy, and deep learning theory are intricate: work through the book, and those connections will feel intuitive. VOLUME-I of the book focuses on statistical perspectives and blends background fundamentals with core ideas and practical knowledge. There are dedicated chapters on:

  •  Information Theory
    
  •  Calculus & Algorithmic Differentiation
    
  •  Bayesian Deep Learning & Probabilistic Programming
    
  •  Logistic Regression
    
  •  Ensemble Learning
    
  •  Feature Extraction
    
  •  Deep Learning: Expanded Chapter (100+ pages)
    

These chapters appear alongside numerous in-depth treatments of topics in Deep Learning with code examples in PyTorch, Python and C++.

Citation

@Book{Kashani2019, title = {Deep learning Interviews}, 
   author = {Shlomo Kashani}, 
   publisher = {Shlomo Kashani}, 
   year = {2020}, 
   edition = {1st}, 
   note = {ISBN 13: 978-1-9162435-4-5 }, 
   url = {https://www.interviews.ai}, 
}

Disclaimers

  • "PyTorch" is a trademark of Facebook.

Licensing

ALL RIGHTS RESERVED.

The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher. Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book. Either directly or indirectly. This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher. Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, and reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book. By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, which are incurred as a result of the use of information contained within this document, including, but not limited to errors, omissions, or inaccuracies.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Limit of Liability/Disclaimer of Warranty. While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Notices. Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
Facebook Research 605 Jan 02, 2023
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023