This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

Overview

VAC_CSLR

PWC

This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper]


Prerequisites

  • This project is implemented in Pytorch (>1.8). Thus please install Pytorch first.

  • ctcdecode==0.4 [parlance/ctcdecode],for beam search decode.

  • [Optional] sclite [kaldi-asr/kaldi], install kaldi tool to get sclite for evaluation. After installation, create a soft link toward the sclite:
    ln -s PATH_TO_KALDI/tools/sctk-2.4.10/bin/sclite ./software/sclite We also provide a python version evaluation tool for convenience, but sclite can provide more detailed statistics.

  • [Optional] SeanNaren/warp-ctc At the beginning of this research, we adopt warp-ctc for supervision, and we recently find that pytorch version CTC can reach similar results.

Data Preparation

  1. Download the RWTH-PHOENIX-Weather 2014 Dataset [download link]. Our experiments based on phoenix-2014.v3.tar.gz.

  2. After finishing dataset download, extract it to ./dataset/phoenix, it is suggested to make a soft link toward downloaded dataset.
    ln -s PATH_TO_DATASET/phoenix2014-release ./dataset/phienix2014

  3. The original image sequence is 210x260, we resize it to 256x256 for augmentation. Run the following command to generate gloss dict and resize image sequence.

    cd ./preprocess
    python data_preprocess.py --process-image --multiprocessing

Inference

​ We provide the pretrained models for inference, you can download them from:

Backbone WER on Dev WER on Test Pretrained model
ResNet18 21.2% 22.3% [Baidu] (passwd: qi83)
[Dropbox]

​ To evaluate the pretrained model, run the command below:
python main.py --load-weights resnet18_slr_pretrained.pt --phase test

Training

The priorities of configuration files are: command line > config file > default values of argparse. To train the SLR model on phoenix14, run the command below:

python main.py --work-dir PATH_TO_SAVE_RESULTS --config PATH_TO_CONFIG_FILE --device AVAILABLE_GPUS

Feature Extraction

We also provide feature extraction function to extract frame-wise features for other research purpose, which can be achieved by:

python main.py --load-weights PATH_TO_PRETRAINED_MODEL --phase features

To Do List

  • Pure python implemented evaluation tools.
  • WAR and WER calculation scripts.

Citation

If you find this repo useful in your research works, please consider citing:

@InProceedings{Min_2021_ICCV,
    author    = {Min, Yuecong and Hao, Aiming and Chai, Xiujuan and Chen, Xilin},
    title     = {Visual Alignment Constraint for Continuous Sign Language Recognition},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {11542-11551}
}

Relevant paper

Self-Mutual Distillation Learning for Continuous Sign Language Recognition[paper]

@InProceedings{Hao_2021_ICCV,
    author    = {Hao, Aiming and Min, Yuecong and Chen, Xilin},
    title     = {Self-Mutual Distillation Learning for Continuous Sign Language Recognition},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {11303-11312}
}

Acknowledge

We appreciate the help from Runpeng Cui, Hao Zhou@Rhythmblue and Xinzhe Han@GeraldHan :)

Owner
Yuecong Min
CS Ph.D. candidate, Computer Vision
Yuecong Min
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
LIAO Shuiying 6 Dec 01, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022