This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

Overview

VAC_CSLR

PWC

This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper]


Prerequisites

  • This project is implemented in Pytorch (>1.8). Thus please install Pytorch first.

  • ctcdecode==0.4 [parlance/ctcdecode],for beam search decode.

  • [Optional] sclite [kaldi-asr/kaldi], install kaldi tool to get sclite for evaluation. After installation, create a soft link toward the sclite:
    ln -s PATH_TO_KALDI/tools/sctk-2.4.10/bin/sclite ./software/sclite We also provide a python version evaluation tool for convenience, but sclite can provide more detailed statistics.

  • [Optional] SeanNaren/warp-ctc At the beginning of this research, we adopt warp-ctc for supervision, and we recently find that pytorch version CTC can reach similar results.

Data Preparation

  1. Download the RWTH-PHOENIX-Weather 2014 Dataset [download link]. Our experiments based on phoenix-2014.v3.tar.gz.

  2. After finishing dataset download, extract it to ./dataset/phoenix, it is suggested to make a soft link toward downloaded dataset.
    ln -s PATH_TO_DATASET/phoenix2014-release ./dataset/phienix2014

  3. The original image sequence is 210x260, we resize it to 256x256 for augmentation. Run the following command to generate gloss dict and resize image sequence.

    cd ./preprocess
    python data_preprocess.py --process-image --multiprocessing

Inference

​ We provide the pretrained models for inference, you can download them from:

Backbone WER on Dev WER on Test Pretrained model
ResNet18 21.2% 22.3% [Baidu] (passwd: qi83)
[Dropbox]

​ To evaluate the pretrained model, run the command below:
python main.py --load-weights resnet18_slr_pretrained.pt --phase test

Training

The priorities of configuration files are: command line > config file > default values of argparse. To train the SLR model on phoenix14, run the command below:

python main.py --work-dir PATH_TO_SAVE_RESULTS --config PATH_TO_CONFIG_FILE --device AVAILABLE_GPUS

Feature Extraction

We also provide feature extraction function to extract frame-wise features for other research purpose, which can be achieved by:

python main.py --load-weights PATH_TO_PRETRAINED_MODEL --phase features

To Do List

  • Pure python implemented evaluation tools.
  • WAR and WER calculation scripts.

Citation

If you find this repo useful in your research works, please consider citing:

@InProceedings{Min_2021_ICCV,
    author    = {Min, Yuecong and Hao, Aiming and Chai, Xiujuan and Chen, Xilin},
    title     = {Visual Alignment Constraint for Continuous Sign Language Recognition},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {11542-11551}
}

Relevant paper

Self-Mutual Distillation Learning for Continuous Sign Language Recognition[paper]

@InProceedings{Hao_2021_ICCV,
    author    = {Hao, Aiming and Min, Yuecong and Chen, Xilin},
    title     = {Self-Mutual Distillation Learning for Continuous Sign Language Recognition},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {11303-11312}
}

Acknowledge

We appreciate the help from Runpeng Cui, Hao Zhou@Rhythmblue and Xinzhe Han@GeraldHan :)

Owner
Yuecong Min
CS Ph.D. candidate, Computer Vision
Yuecong Min
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023