[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Related tags

Deep LearningInfoCL
Overview

Rethinking Minimal Sufficient Representation in Contrastive Learning

PyTorch implementation of
Rethinking Minimal Sufficient Representation in Contrastive Learning
Haoqing Wang, Xun Guo, Zhi-hong Deng, Yan Lu

CVPR 2022 Oral

Abstract

Contrastive learning between different views of the data achieves outstanding success in the field of self-supervised representation learning and the learned representations are useful in broad downstream tasks. Since all supervision information for one view comes from the other view, contrastive learning approximately obtains the minimal sufficient representation which contains the shared information and eliminates the non-shared information between views. Considering the diversity of the downstream tasks, it cannot be guaranteed that all task-relevant information is shared between views. Therefore, we assume the non-shared task-relevant information cannot be ignored and theoretically prove that the minimal sufficient representation in contrastive learning is not sufficient for the downstream tasks, which causes performance degradation. This reveals a new problem that the contrastive learning models have the risk of over-fitting to the shared information between views. To alleviate this problem, we propose to increase the mutual information between the representation and input as regularization to approximately introduce more task-relevant information, since we cannot utilize any downstream task information during training. Extensive experiments verify the rationality of our analysis and the effectiveness of our method. It significantly improves the performance of several classic contrastive learning models in downstream tasks.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{wang2022rethinking,
  title={Rethinking Minimal Sufficient Representation in Contrastive Learning},
  author={Wang, Haoqing and Deng, Zhi-hong and Guo, Xun and Lu, Yan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={xx--xx},
  year={2022}
}

Note

  • This code is built upon the implementation from moco and CLAE.
  • The dataset, model, and code are for non-commercial research purposes only.
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
FinRLยญ-Meta: A Universe for Dataยญ-Driven Financial Reinforcement Learning. ๐Ÿ”ฅ

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website โ€ข Colab โ€ข Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

์•Œ๊ณ ๋ฆฌ์ฆ˜ ์Šคํ„ฐ๋”” ๐Ÿ”ฅ ๋ถ€์ŠคํŠธ์บ ํ”„ ์›น๋ชจ๋ฐ”์ผ 6๊ธฐ iOS 10์กฐ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์Šคํ„ฐ๋”” ์ž…๋‹ˆ๋‹ค. ๊ฐœ์ธ์ ์ธ ์‚ฌ์ • ๋“ฑ์œผ๋กœ S034, S055๋งŒ ์ฐธ๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์Šคํ„ฐ๋”” ๋ชฉ์  ์ƒ์ง„: ์ฝ”ํ…Œ ํ•ฉ๊ฒฉ + ๋ถ€์บ ๋๋‚˜๊ณ  ์•„์นจ์— ์ผ์–ด๋‚˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์‚ฌ์ดํด ๊ธฐ์™„: ๊พธ์ค€ํ•˜๊ฒŒ ์ž๋ฆฌ์— ์•‰์•„ ๊ณต๋ถ€ํ•˜๊ธฐ +

2 Jan 11, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

็Šนๅœจ้•œไธญ 153 Dec 14, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022