Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Overview

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

The code repository for "Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation" [paper, to appear] [slides, to appear] [poster, to appear] in PyTorch. If you use any content of this repo for your work, please cite the following bib entry:

@misc{Proto-CAT,
  author = {Yi-Kai Zhang},
  title = {Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ZhangYikaii/Proto-CAT}},
  commit = {main}
}

Prototype-based Co-Adaptation with Transformer

Illustration of Proto-CAT. The model transforms the classification space using [公式] based on two kinds of audio-visual prototypes (class centers): (1) the base training categories (color with [公式]blue, [公式]green, and [公式]pink); and (2) the additional novel test categories (color with [公式]burning transition). Proto-CAT learns and generalizes on novel test categories from limited labeled examples, maintaining performance on the base training ones. [公式] includes audio-visual level and category level prototype-based co-adaptation. From left to right, more coverage and more bright colors represent a more reliable classification space.

 

Results

Dataset LRW LRW-1000
Data Source Audio () Video () Audio-Video () Audio-Video ()
Perf. Measures on H-mean H-mean Base Novel H-mean Base Novel H-mean
LSTM-based 32.20 8.00 97.09 23.76 37.22 71.34 0.03 0.07
GRU-based 37.01 10.58 97.44 27.35 41.71 71.34 0.05 0.09
MS-TCN-based 62.29 19.06 80.96 51.28 61.76 71.55 0.33 0.63
ProtoNet-GFSL 39.95 14.40 96.33 39.23 54.79 69.33 0.76 1.47
FEAT-GFSL 49.90 25.75 96.26 54.52 68.83 71.69 2.62 4.89
DFSL 72.13 42.56 66.10 84.62 73.81 31.68 68.72 42.56
CASTLE 75.48 34.68 73.50 90.20 80.74 11.13 54.07 17.84
Proto-CAT (Ours) 84.18 74.55 93.37 91.20 92.13 49.70 38.27 42.25
Proto-CAT+ (Ours) 93.18 90.16 91.49 54.55 38.16 43.88

Audio-visual generalized few-shot learning classification performance (in %; measured over 10,000 rounds; higher is better) of 5-way 1-shot training tasks on LRW and LRW-1000 datasets. The best result of each scenario is in bold font. The performance measure on both base and novel classes (Base, Novel in the table) is mean accuracy. Harmonic mean (i.e., H-mean) of the above two is a better generalized few-shot learning performance measure.

 

Prerequisites

Environment

Please refer to requirements.txt and run:

pip install -r requirement.txt

Dataset

  • Use preprocessed data (suggested):

    LRW and LRW-1000 forbid directly share the preprocessed data.

  • Use raw data and do preprocess:

    Download LRW Dataset and unzip, like,

    /your data_path set in .sh file
    ├── lipread_mp4
    │   ├── [ALL CLASS FOLDER]
    │   ├── ...
    

    Run prepare_lrw_audio.py and prepare_lrw_video.py to preprocess data on video and audio modality, respectively. Please modify the data path in the above preprocessing file in advance.

    Similarly, Download LRW-1000 dataset and unzip. Run prepare_lrw1000_audio.py and prepare_lrw1000_video.py to preprocess it.

Pretrained Weights

We provide pretrained weights on LRW and LRW-1000 dataset. Download from Google Drive or Baidu Yun(password: 3ad2) and put them as:

/your init_weights set in .sh file
├── Conv1dResNetGRU_LRW-pre.pth
├── Conv3dResNetLSTM_LRW-pre.pth
├── Conv1dResNetGRU_LRW1000-pre.pth
├── Conv3dResNetLSTM_LRW1000-pre.pth

 

How to Train Proto-CAT

For LRW dataset, fine-tune the parameters in run/protocat_lrw.sh, and run:

cd ./Proto-CAT/run
bash protocat_lrw.sh

Similarly, run bash protocat_lrw1000.sh for dataset LRW-1000.

Run bash protocat_plus_lrw.sh / bash protocat_plus_lrw1000.sh to train Proto-CAT+.

How to Reproduce the Result of Proto-CAT

Download the trained models from Google Drive or Baidu Yun(password: swzd) and run:

bash test_protocat_lrw.sh

Run bash test_protocat_lrw1000.sh, bash test_protocat_plus_lrw.sh, or bash test_protocat_plus_lrw1000.sh to evaluate other models.

 

Code Structures

Proto-CAT's entry function is in main.py. It calls the manager Trainer in models/train.py that contains the main training logic. In Trainer, prepare_handle.prepare_dataloader combined with train_prepare_batch inputs and preprocesses generalized few-shot style data. fit_handle controls forward and backward propagation. callbacks deals with the behaviors at each stage.

Arguments

All parameters are defined in models/utils.py. We list the main ones below:

  • do_train, do_test: Store-true switch for whether to train or test.
  • data_path: Data directory to be set.
  • model_save_path: Optimal model save directory to be set.
  • init_weights: Pretrained weights to be set.
  • dataset: Option for the dataset.
  • model_class: Option for the top model.
  • backend_type: Option list for the backend type.
  • train_way, val_way, test_way, train_shot, val_shot, test_shot, train_query, val_query, test_query: Tasks setting of generalized few-shot learning.
  • gfsl_train, gfsl_test: Switch for whether train or test in generalized few-shot learning way, i.e., whether additional base class data is included.
  • mm_list: Participating modalities.
  • lr_scheduler: List of learning rate scheduler.
  • loss_fn: Option for the loss function.
  • max_epoch: Maximum training epoch.
  • episodes_per_train_epoch, episodes_per_val_epoch, episodes_per_test_epoch: Number of sampled episodes per epoch.
  • num_tasks: Number of tasks per episode.
  • meta_batch_size: Batch size of each task.
  • test_model_filepath: Trained weights .pth file path when testing a model.
  • gpu: Multi-GPU option like --gpu 0,1,2,3.
  • logger_filename: Logger file save directory.
  • time_str: Token for each run, and will generate by itself if empty.
  • acc_per_class: Switch for whether to measure the accuracy of each class with base, novel, and harmonic mean.
  • verbose, epoch_verbose: Switch for whether to output message or output progress bar.
  • torch_seed, cuda_seed, np_seed, random_seed: Seeds of random number generation.

 

Acknowledgment

We thank the following repos providing helpful components/functions in our work.

Owner
Kaiaicy
Few-Shot Learning
Kaiaicy
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022