Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Overview

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

In this repo, you will find the instructions on how to request the data set used to perform the experiments of the aforementioned paper. We manually annotated from scratch a subset of 450 images from the UFBA-UESC Dental Images Deep data set, which comprises 1500 panoramic dental radiographs. We consider that this new data set evolves a previously published data set: DNS Panoramic Images. Therefore, we refer to this new data set as the DNS Panoramic Images v2, where DNS stands for Detection, Numbering, and Segmentation. We presented our results at the 17th International Symposium on Medical Information Processing and Analysis (SIPAIM), and our paper was among the finalists of the best paper award. To be notified of code releases, new data sets, and errata, please watch this repo.

Data set statistics

The data set comprises 450 panoramic images, split into six folds, each containing 75 images. The first five folds were used for cross-validation, while the remaining one constituted the test data set. Therefore, we strongly recommend using fold number 6 (fold-06) as the test data set, so your results can be compared to ours. The annotations are in six JSON files (one for each fold) in the COCO format. We cropped all images to the new 1876x1036 dimensions and converted them to PNG image files. The table below summarizes the data used according to image categories. These categories group the images according to the presence of 32 teeth, restoration, and dental appliances, revealing the high variability of the images. Categories 5 and 6 are reserved for patients with dental implants and more than 32 teeth, respectively. Spoiler: Watch this repo for soon to be published updates.

Category 32 Teeth Restoration Appliance Number and Inst. Segm.
1 ✔️ ✔️ ✔️ 24
2 ✔️ ✔️ 66
3 ✔️ ✔️ 14
4 ✔️ 41
5 Implants 36
6 More than 32 teeth 51
7 ✔️ ✔️ 35
8 ✔️ 136
9 ✔️ 13
10 34
Total 450

Citation

If you use this data set, please cite:

L. Pinheiro, B. Silva, B. Sobrinho, F. Lima, P. Cury, L. Oliveira, “Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays,” in Symposium on Medical Information Processing and Analysis (SIPAIM). SPIE, 2021.

@inproceedings{pinheiro2021numbering,
  title={Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays},
  author={Pinheiro, Laís and Silva, Bernardo and Sobrinho, Brenda and Lima, Fernanda and Cury, Patrícia and Oliveira, Luciano.}
  booktitle={Symposium on Medical Information Processing and Analysis (SIPAIM)},
  year={2021},
  organization={SPIE}
}

Previous Works

This data set and its corresponding paper are a continuation of other works of our group. Please, consider reading and citing:

  • B. Silva, L. Pinheiro, L. Oliveira, and M. Pithon, “A study on tooth segmentation and numbering using end-to-end deep neural networks,” in Conference on Graphics, Patterns and Images. IEEE, 2020.
@inproceedings{silva2020study,
  title={A study on tooth segmentation and numbering using end-to-end deep neural networks},
  author={Silva, Bernardo and Pinheiro, Laís and Oliveira, Luciano and Pithon, Matheus}
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  year={2020},
  organization={IEEE}
}
  • G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, and L. Oliveira, “Deep instance segmentation of teeth in panoramic X-ray images,” in Conference on Graphics, Patterns and Images. IEEE, 2018.
@inproceedings{jader2018deep,
  title={Deep instance segmentation of teeth in panoramic X-ray images},
  author={Jader, Gil and Fontineli, Jefferson and Ruiz, Marco and Abdalla, Kalyf and Pithon, Matheus and Oliveira, Luciano},
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  pages={400--407},
  year={2018},
  organization={IEEE}
}
  • G. Silva, L. Oliveira, and M. Pithon, “Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives,” Expert Systems with Applications, Patterns and Images. vol. 107, pp. 15-31, 2018.
@article{silva2018automatic,
  title={Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives},
  author={Silva, Gil and Oliveira, Luciano and Pithon, Matheus},
  journal={Expert Systems with Applications},
  volume={107},
  pages={15--31},
  year={2018},
  publisher={Elsevier}
}

Demonstration

Follow the provided jupyter notebook (demo.ipynb) to get a quick sense of the data set. The conversions.py file defines useful functions to visualize the annotations.

Request the Data Set

Copy the text below in a PDF file, fill out the fields in the text header, and sign it at the end. Please send an e-mail to [email protected] to receive a link to download the DNS Panoramic Images v2 data set with the PDF in attachment. The e-mail must be sent from a professor's valid institutional account:

Subject: Request to download the DNS Panoramic Images v2.

"Name: [your first and last name]

Affiliation: [university where you work]

Department: [your department]

Current position: [your job title]

E-mail: [must be the e-mail at the above-mentioned institution]

I have read and agreed to follow the terms and conditions below: The following conditions define the use of the DNS Panoramic Images v2:

This data set is provided "AS IS" without any express or implied warranty. Although every effort has been made to ensure accuracy, IvisionLab does not take any responsibility for errors or omissions;

Without the expressed permission of IvisionLab, any of the following will be considered illegal: redistribution, modification, and commercial usage of this data set in any way or form, either partially or in its entirety;

All images in this data set are only allowed for demonstration in academic publications and presentations;

This data set will only be used for research purposes. I will not make any part of this data set available to a third party. I'll not sell any part of this data set or make any profit from its use.

[your signature]"

P.S. A link to the data set file will be sent as soon as possible.

Owner
Intelligent Vision Research Lab
Computer Vision and Image Pattern Recognition repository
Intelligent Vision Research Lab
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023