Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Overview

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection.

Project page: https://herohuyongtao.github.io/research/publications/deep-tag/.

Overview

DeepTag is a general framework for fiducial marker design and detection, which supports existing and newly-designed marker families. DeepTag is a two-stage marker detection pipeline:

  • Stage-1: detect ROIs of potential markers;
  • Stage-2: detect keypoints and digital symbols inside each ROI, then determine 6-DoF pose and marker ID.

pipeline

How to run

  • For image input:
    python test_deeptag.py --config config_image.json
    
  • For video input:
    python test_deeptag.py --config config_video.json
    

The configuration file is in JSON format. Please modify the configurations to fit your needs. Example configurations files for image and video input are provided (i.e., config_image.json and config_video.json).

Detail explaination of configuration file:

  • is_video: {0, 1} for image/video respectively.
  • filepath: path of input image/video (use 0 for webcam input).
  • family: marker family, currently support {apriltag, aruco, artoolkitplus, runetag, topotag, apriltagxo}.
  • hamming_dist: Hamming dist for checking the marker library; normally, 4 works well enough.
  • codebook: path of codebook; if it is empty, the default path codebook/FAMILY_codebook.txt will be used. For markers with multiple codebooks like AprilTag and ArUco, their default codebooks are for AprilTag (36h11) and ArUco (36h12) respectively.
  • cameraMatrix: camera intrinsic matrix, [fx, 0, cx, 0, fy, cy, 0, 0, 1].
  • distCoeffs: camera distortion coefficients (both radial and tangential), [k1, k2, p1, p2, k3, k4, k5, k6].
  • marker_size: physical size of the marker.

Besides supporting existing markers like AprilTag, ArUco, ARToolkitPlus, TopoTag & RuneTag, DeepTag also supports newly-designed markers like AprilTag-XO, AprilTag-XA and RuneTag+ (provided in folders images_tag). Set family to apriltagxo in config for AprilTag-XO and AprilTag-XA, and runetag for RuneTag+ respectively.

Terms of use

The source code is provided for research purposes only. Any commercial use is prohibited. When using the code in your research work, please cite the following paper:

"DeepTag: A General Framework for Fiducial Marker Design and Detection."
Zhuming Zhang, Yongtao Hu, Guoxing Yu, and Jingwen Dai
arXiv:2105.13731 (2021).

@article{zhang2021deeptag,
  title={{DeepTag: A General Framework for Fiducial Marker Design and Detection}},
  author={Zhang, Zhuming and Hu, Yongtao and Yu, Guoxing and Dai, Jingwen},
  year={2021},
  eprint={2105.13731},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Contact

If you find any bug or have any question about the code, please report to the Issues page.

Owner
Yongtao Hu
Yongtao Hu
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022