Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Overview

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection.

Project page: https://herohuyongtao.github.io/research/publications/deep-tag/.

Overview

DeepTag is a general framework for fiducial marker design and detection, which supports existing and newly-designed marker families. DeepTag is a two-stage marker detection pipeline:

  • Stage-1: detect ROIs of potential markers;
  • Stage-2: detect keypoints and digital symbols inside each ROI, then determine 6-DoF pose and marker ID.

pipeline

How to run

  • For image input:
    python test_deeptag.py --config config_image.json
    
  • For video input:
    python test_deeptag.py --config config_video.json
    

The configuration file is in JSON format. Please modify the configurations to fit your needs. Example configurations files for image and video input are provided (i.e., config_image.json and config_video.json).

Detail explaination of configuration file:

  • is_video: {0, 1} for image/video respectively.
  • filepath: path of input image/video (use 0 for webcam input).
  • family: marker family, currently support {apriltag, aruco, artoolkitplus, runetag, topotag, apriltagxo}.
  • hamming_dist: Hamming dist for checking the marker library; normally, 4 works well enough.
  • codebook: path of codebook; if it is empty, the default path codebook/FAMILY_codebook.txt will be used. For markers with multiple codebooks like AprilTag and ArUco, their default codebooks are for AprilTag (36h11) and ArUco (36h12) respectively.
  • cameraMatrix: camera intrinsic matrix, [fx, 0, cx, 0, fy, cy, 0, 0, 1].
  • distCoeffs: camera distortion coefficients (both radial and tangential), [k1, k2, p1, p2, k3, k4, k5, k6].
  • marker_size: physical size of the marker.

Besides supporting existing markers like AprilTag, ArUco, ARToolkitPlus, TopoTag & RuneTag, DeepTag also supports newly-designed markers like AprilTag-XO, AprilTag-XA and RuneTag+ (provided in folders images_tag). Set family to apriltagxo in config for AprilTag-XO and AprilTag-XA, and runetag for RuneTag+ respectively.

Terms of use

The source code is provided for research purposes only. Any commercial use is prohibited. When using the code in your research work, please cite the following paper:

"DeepTag: A General Framework for Fiducial Marker Design and Detection."
Zhuming Zhang, Yongtao Hu, Guoxing Yu, and Jingwen Dai
arXiv:2105.13731 (2021).

@article{zhang2021deeptag,
  title={{DeepTag: A General Framework for Fiducial Marker Design and Detection}},
  author={Zhang, Zhuming and Hu, Yongtao and Yu, Guoxing and Dai, Jingwen},
  year={2021},
  eprint={2105.13731},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Contact

If you find any bug or have any question about the code, please report to the Issues page.

Owner
Yongtao Hu
Yongtao Hu
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022