Platform-agnostic AI Framework 🔥

Overview

GitHub last commit (branch) Documentation Status Build Status Downloads Downloads Docker Pulls

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework programming. layer list

🇨🇳 TensorLayerX 是一个跨平台开发框架,可以运行在各类操作系统和AI硬件上,并支持混合框架的开发。支持列表

🇷🇺 TensorLayerX

🇸🇦 TensorLayerX

TensorLayerX

Compare with TensorLayer, TensorLayerX (TLX) is a brand new seperated project for platform-agnostic purpose.

Examples

Quick Start

  • Installation
# install from pypi
pip3 install tensorlayerx 
# install from Github
pip3 install git+https://github.com/tensorlayer/tensorlayerx.git 
# install from OpenI
pip3 install
  • Tutorial

  • Discussion: Slack , [QQ-Group] , [WeChat-Group]

Contact

Citation

If you find TensorLayerX useful for your project, please cite the following papers:

@article{tensorlayer2017,
    author  = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
    journal = {ACM Multimedia},
    title   = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
    url     = {http://tensorlayer.org},
    year    = {2017}
}

@inproceedings{tensorlayer2021,
  title={TensorLayer 3.0: A Deep Learning Library Compatible With Multiple Backends},
  author={Lai, Cheng and Han, Jiarong and Dong, Hao},
  booktitle={2021 IEEE International Conference on Multimedia \& Expo Workshops (ICMEW)},
  pages={1--3},
  year={2021},
  organization={IEEE}
}
Comments
  • load pretrained model from .pth

    load pretrained model from .pth

    I write a model using Pytorch, and save its state_dict() to .pth. Now I want to use tensorlayerx to write it, so other people (using tensorflow etc.) can use this model. My model definition is same in Pytorch and Tensorlayerx, but I can't load pretrained model of .pth in tensorlayerx. Below is my code. (simple model is used here for clarity, the actual model is more complex than this)

    """
    a_torch.py
    """
    import torch
    from torch import nn
    
    class A(nn.Module):
        def __init__(self):
            super(A, self).__init__()
            self.conv = nn.Conv2d(3, 16, kernel_size=1)
            self.bn = nn.BatchNorm2d(16)
            self.relu = nn.ReLU(inplace=True)
        
        def forward(self, x):
            return self.act(self.bn(self.conv(x)))
    
    if __name__ == '__main__':
        a = A()
        torch.save(a.state_dict(), 'a.pth')
    
    """
    a_tlx.py
    """
    import tensorlayerx as tlx
    import torch
    from tensorlayerx import nn
    
    class A(nn.Module):
        def __init__(self):
            super(A, self).__init__()
            self.conv = nn.Conv2d(16, kernel_size=1, data_format='channels_first')
            self.bn = nn.BatchNorm2d(num_features=16, data_format='channels_first')
            self.relu = nn.activation.ReLU()
        
        def forward(self, x):
            return self.act(self.bn(self.conv(x)))
    
    def pth2npz(pth_path):
        temp = torch.load(pth_path)   # type(temp) = OrderedDict
        tlx.files.save_npz_dict(temp.items(), pth_path.split('.')[0] + '.npz')
    
    if __name__ == '__main__':
        a = A()
        pth2npz('a.pth')
        tlx.files.load_and_assign_npz_dict('a.npz', a)
    

    First run a_torch.py, then run a_tlx.py. The error is below.

    Using PyTorch backend.
    Traceback (most recent call last):
      File "test/test_03.py", line 25, in <module>
        tlx.files.load_and_assign_npz_dict('test/a.npz', a)
      File "/home/mchen/anaconda3/envs/kpconv/lib/python3.8/site-packages/tensorlayerx/files/utils.py", line 2208, in load_and_assign_npz_dict
        raise RuntimeError(
    RuntimeError: Weights named 'conv.weight' not found in network. Hint: set argument skip=Ture if you want to skip redundant or mismatch weights
    

    Then I debug and look at the tlx.files.load_and_assign_npz_dict() source code. I find tensorlayerx parameter name is different from PyTorch. This results in key mismatch when loading pre-trained model. In the following two figures, the first is the parameter name of PyTorch and the second is the parameter name of TensorLayerx. 屏幕截图 2022-08-07 202607 屏幕截图 2022-08-07 202555 Now the solution I can think of is to write a key map table, but it is hard for large model. So can you give me a simple solution ? (same model definition in pytorch and tensorlayerx, load pretrained model in .pth) :grin:

    opened by HaoRan-hash 2
  • tlx.nn.Swish()与paddle.nn.Swish()的结果有细微差别

    tlx.nn.Swish()与paddle.nn.Swish()的结果有细微差别

    tlx:

    [-0.16246916, 1.40204561, 0.85213524, ..., 0.85800600, 1.10605156, 1.11549926], [-0.04873780, 0.28885114, 0.15792340, ..., 0.12375022, 0.22599602, 0.53073120], [-0.09840852, 0.40172467, 0.15602632, ..., 0.09853011, 0.29177830, 0.52241892]

    paddle:

    [-0.16246916, 1.40204573, 0.85213524, ..., 0.85800600, 1.10605145, 1.11549926], [-0.04873780, 0.28885114, 0.15792342, ..., 0.12375022, 0.22599602, 0.53073120], [-0.09840852, 0.40172467, 0.15602632, ..., 0.09853011, 0.29177833, 0.52241892]

    opened by moshizhiyin 1
  • add some functions

    add some functions

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • Fix docs

    Fix docs

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • add some functions

    add some functions

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • add paddle backend ops

    add paddle backend ops

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • fix swish and prelu

    fix swish and prelu

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • Fix requirements oneflow backend

    Fix requirements oneflow backend

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • Oneflow dev

    Oneflow dev

    Description

    oneflow backend:

    backends/ops/oneflow_nn.py
    backends/ops/oneflow_backend.py
    nn/core/core_oneflow.py
    

    tutorials: 6 MarkDown files in /home/user/pyprojects/TensorLayerX/docs/tutorials

    other: Training progressbar using rich bugs fixed

    opened by QuantumLiu 0
  • Add Training Progress Bar

    Add Training Progress Bar

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • Add loss monitoring to training

    Add loss monitoring to training

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • net.set_eval() seems not work well

    net.set_eval() seems not work well

    Issue Description

    When I test my pspnet model, I find if not use "with torch.no_grad()" or "gradient()", the gpu memory will be full after testing several photos. I guess set_eval() function seems to have failed. Or I used the wrong method to test? This is my code, thank you!

    In addition, I found that the batch size will affect the final test results. If net. eval() is not performed in the pytorch, it will cause similar problems. It seems that this is caused by the BatchNorm layer.

        os.environ['TL_BACKEND'] = 'torch'
        tlx.set_device(device='GPU', id=3)
        # ...
        net = models[backend]()
        net.load_weights('test.npz', format='npz_dict', skip=True)
        test_dataset = MyDataset(root_dir="test/")
        test_loader = DataLoader(test_dataset, batch_size=4, shuffle=True)
    
        train_weights = net.trainable_weights
        scheduler = tlx.optimizers.lr.StepDecay(learning_rate=0, step_size=30, gamma=0.5, last_epoch=-1)
        optimizer = tlx.optimizers.Adam(lr=scheduler)
    
        hist = np.zeros((num_classes, num_classes))
        net.set_eval()
        # with torch.no_grad():
        for x, y, y_cls in test_loader:
            _out, _out_cls = net(x)
            seg_loss = tlx.losses.softmax_cross_entropy_with_logits(_out, y)
            cls_loss = tlx.losses.sigmoid_cross_entropy(_out_cls, y_cls)
            _loss = seg_loss + 1 * cls_loss
            # grads = optimizer.gradient(_loss, train_weights)
            # optimizer.apply_gradients(zip(grads, train_weights))
            '''
                compute miou matrix
            '''
            out = tlx.convert_to_numpy(_out)
            y = tlx.convert_to_numpy(y)
            out = np.argmax(out, axis=1)
            for i in range(0, out.shape[0]):
                pred = out[i]
                gt = y[i]
                hist += fast_hist(gt.flatten(), pred.flatten(), num_classes)
                
        # compute miou then print
        mIoUs = per_class_iu(hist)
        for ind_class in range(num_classes):
            print('===>' + name_classes[ind_class] + ':\t' + str(round(mIoUs[ind_class] * 100, 2)))
        print('===> mIoU: ' + str(round(np.nanmean(mIoUs) * 100, 2)))
        print("test loss: {}".format(train_loss))
    
    
    opened by qzhiyue 0
  • tensorlayerx.ops.Pad不支持“channels_first”的data_format,后续会补充“channels_first”的格式吗?

    tensorlayerx.ops.Pad不支持“channels_first”的data_format,后续会补充“channels_first”的格式吗?

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### tensorlayerx.ops.Pad源码######
    # ======================================================== #
    
    class Pad(object):
    
        def __init__(self, paddings, mode="REFLECT", constant_values=0):
            if mode not in ['CONSTANT', 'REFLECT', 'SYMMETRIC']:
                raise Exception("Unsupported mode: {}".format(mode))
            if mode == 'SYMMETRIC':
                raise NotImplementedError
            self.paddings = paddings
            self.mode = mode.lower()
            self.constant_values = constant_values
    
        def __call__(self, x):
            if len(x.shape) == 3:
                data_format = 'NLC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            elif len(x.shape) == 4:
                data_format = 'NHWC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            elif len(x.shape) == 5:
                data_format = 'NDHWC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            else:
                raise NotImplementedError('Please check the input shape.')
            return pd.nn.functional.pad(x, self.paddings, self.mode, value=self.constant_values, data_format=data_format)
    
        def correct_paddings(self, in_shape, paddings, data_format):
            if in_shape == 3 and data_format == 'NLC':
                correct_output = [paddings[1][0], paddings[1][1]]
            elif in_shape == 4 and data_format == 'NHWC':
                correct_output = [paddings[2][0], paddings[2][1], paddings[1][0], paddings[1][1]]
            elif in_shape == 5 and data_format == 'NDHWC':
                correct_output = [
                    paddings[3][0], paddings[3][1], paddings[2][0], paddings[2][1], paddings[1][0], paddings[1][1]
                ]
            else:
                raise NotImplementedError('Does not support channels first')
            return correct_output
    
    
    opened by zhxiucui 0
  • tenorlayerx.nn没有paddle.nn.InstanceNorm2D对应的算子

    tenorlayerx.nn没有paddle.nn.InstanceNorm2D对应的算子

    paddle.nn.InstanceNorm2D(num_features, epsilon=1e-05, momentum=0.9, weight_attr=None, bias_attr=None, data_format="NCHW", name=None) image 更多见接口文档https://www.paddlepaddle.org.cn/documentation/docs/zh/2.3/api/paddle/nn/InstanceNorm2D_cn.html#instancenorm2d

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    import tensorlayerx as tlx
    
    opened by zhxiucui 0
  • tensorlayerx没有优化函数的基类,  只能使用tlx.optimizers.paddle_optimizers.Optimizer来判断

    tensorlayerx没有优化函数的基类, 只能使用tlx.optimizers.paddle_optimizers.Optimizer来判断

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    # paddle
    import paddle
    x = 13
    print(isinstance(x, paddle.optimizers.Optimizer))
    
    # tensorlayer
    import os
    os.environ['TL_BACKEND'] = 'paddle'
    import tensorlayer as tlx
    x = 13
    print(isinstance(x, tlx.optimizers.paddle_optimizers.Optimizer))
    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    
    opened by zhxiucui 0
  • tensorlayerx.nn.UpSampling2d当data_format=

    tensorlayerx.nn.UpSampling2d当data_format="channels_first"和paddle.nn.Upsample输出结果维度不一致

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    import os
    import paddle
    os.environ['TL_BACKEND'] = 'paddle'
    import tensorlayerx as tlx
    
    tlx_ni = tlx.nn.Input([4, 32, 50, 50], name='input')
    tlx_out = tlx.nn.UpSampling2d(scale=(2, 2), data_format="channels_first")(tlx_ni)
    print(f"tlx_out.shape={tlx_out.shape}")
    
    pd_ni = paddle.rand([4, 32, 50, 50], dtype="float32")
    pd_out = paddle.nn.Upsample(scale_factor=2, data_format="NCHW")(pd_ni)
    print(f"pd_out.shape={pd_out.shape}")
    
    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    

    输出结果 tlx_out.shape=[4, 32, 64, 100] pd_out.shape=[4, 32, 100, 100]

    opened by zhxiucui 0
Releases(v0.5.7)
  • v0.5.7(Sep 19, 2022)

    TensorLayerX 0.5.7 is a maintenance release . In this release , we have the following changes.

    • Fix PyTorch back-end depthtospace operator.
    • Fix where the training API could not accept multiple inputs.
    • Add the example of importing trained models from PyTorch or Paddle to TensorLayerX.
    • Add roll and logsoftmax operators.
    • Update the model trained by any backend of TensorLayerX can be imported to any backend of TensorLayerX.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.6(Jul 15, 2022)

    TensorLayerX 0.5.6 is a maintenance release . In this release , we have the following changes .

    • Fixed Sequential mode ONNX node collection .
    • Fixed bug with RNN LSTM GRU training parameters .
    • Fixed the inconsistency of different backends parameters of DepthWiseConv2d.
    • Fixed the bug of saving parameters to npz.
    • Updated padding layers.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.5(Jun 27, 2022)

    TensorLayerX 0.5.5 is a maintenance release.In this release, we have the following changes.

    • Added get_device, to_device operator.
    • Changed the parameter name of the average pooling layer to (AvgPool1d, GlobalAvgPool1d, AdaptiveAvgPool1d, AvgPool2d, GlobalAvgPool2d Etc.)
    • Fixed LSTM RNN GRU.
    • Fixed a bug where ParameterList and ParameterDict training parameters on the TensorFlow backend were not collected.
    • Fixed support for MindSpore1.7.0 version.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.4(May 31, 2022)

    TensorLayerX 0.5.4 is a maintenance release.In this release, we have the following changes.

    • Added documentation for metric functions
    • Add Einsum
    • Fixed PyTorch back-end optimizers
    • Fixed preprocessing when activation functions are used as parameters

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.3(May 16, 2022)

    TensorLayerX 0.5.3 is a maintenance release.In this release, we have the following changes.

    • Added kernel_size, stride, dilation parameters can be int or tuple.
    • Added padding mode can be int, tuple, or str. str is "SAME" or "VALID".
    • Added TensorLayerX model topology for ONNX model export, can generate topology by model.build_graph(inputs).
    • Fix the problem of slow training speed due to MindSpore optimizer wrapping.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.1(Apr 14, 2022)

  • v0.5.0(Mar 7, 2022)

    TensorLayerX 0.5.0 is a maintenance release,it supports TensorFlow、MindSpore and PaddlePaddle backends, and supports some PyTorch operator backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. Feel free to use it and make suggestions.

    Source code(tar.gz)
    Source code(zip)
Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023