Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Overview

Understanding Minimum Bayes Risk Decoding

This repo provides code and documentation for the following paper:

Müller and Sennrich (2021): Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

@inproceedings{muller2021understanding,
      title={Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation}, 
      author = {M{\"u}ller, Mathias  and
      Sennrich, Rico},
      year={2021},
      eprint={2105.08504},
      booktitle = "Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)"
}

Basic Setup

Clone this repo in the desired place:

git clone https://github.com/ZurichNLP/understanding-mbr
cd understanding-mbr

then proceed to install software before running any experiments.

Install required software

Create a new virtualenv that uses Python 3. Please make sure to run this command outside of any virtual Python environment:

./scripts/create_venv.sh

Important: Then activate the env by executing the source command that is output by the shell script above.

Download and install required software:

./scripts/download.sh

The download script makes several important assumptions, such as: your OS is Linux, you have CUDA 10.2 installed, you have access to a GPU for training and translation, your folder for temp files is /var/tmp. Edit the script before running it to fit to your needs.

Running experiments in general

Definition of "run"

We define a "run" as one complete experiment, in the sense that a run executes a pipeline of steps. Every run is completely self-contained: it does everything from downloading the data until evaluation of a trained model.

The series of steps executed in a run is defined in

scripts/tatoeba/run_tatoeba_generic.sh

This script is generic and will never be called on its own (many variables would be undefined), but all our scripts eventually call this script.

SLURM jobs

Individual steps in runs are submitted to a SLURM system. The generic run script:

scripts/tatoeba/run_tatoeba_generic.sh

will submit each individual step (such as translation, or model training) as a separate SLURM job. Depending on the nature of the task, the scripts submits to a different cluster, or asks for different resources.

IMPORTANT: if

  • you do not work on a cluster that uses SLURM for job management,
  • your cluster layout, resource naming etc. is different

you absolutely need to modify or replace the generic script scripts/tatoeba/run_tatoeba_generic.sh before running anything. If you do not use SLURM at all, it might be possible to just replace calls to scripts/tatoeba/run_tatoeba_generic.sh with scripts/tatoeba/run_tatoeba_generic_no_slurm.sh.

scripts/tatoeba/run_tatoeba_generic_no_slurm.sh is a script we provide for convenience, but have not tested it ourselves. We cannot guarantee that it runs without error.

Dry run

Before you run actual experiments, it can be useful to perform a dry run. Dry runs attempt to run all commands, create all files etc. but are finished within minutes and use CPU only. Dry runs help to catch some bugs (such as file permissions) early.

To dry-run a baseline system for the language pair DAN-EPO, run:

./scripts/tatoeba/dry_run_baseline.sh

Single (non-dry!) example run

To run the entire pipeline (downloading data until evaluation of trained model) for a single language pair from Tatoeba, run

./scripts/tatoeba/run_baseline.sh

This will train a model for the language pair DAN-EPO, but also execute all steps before and after model training.

Start a certain group of runs

It is possible to submit several runs at the same time, using the same shell script. For instance, to run all required steps for a number of medium-resource language pairs, run

./scripts/tatoeba/run_mediums.sh

Recovering partial runs

Steps within a run pipeline depend on each other (SLURM sbatch --afterok dependency in most cases). This means that if a job X fails, subsequent jobs that depend on X will never start. If you attempt to re-run completed steps they exit immediately -- so you can always re-run an entire pipeline if any step fails.

Reproducing the results presented in our paper in particular

Training and evaluating the models

To create all models and statistics necessary to compare MBR with different utility functions:

scripts/tatoeba/run_compare_risk_functions.sh

To reproduce experiments on domain robustness:

scripts/tatoeba/run_robustness_data.sh

To reproduce experiments on copy noise in the training data:

scripts/tatoeba/run_copy_noise.sh

Creating visualizations and result tables

To reproduce exactly the tables and figures we show in the paper, use our Google Colab here:

https://colab.research.google.com/drive/1GYZvxRB1aebOThGllgb0teY8A4suH5j-?usp=sharing

This is possible only because we have hosted the results of our experiments on our servers and Colab can retrieve files from there.

Browse MBR samples

We also provide examples for pools of MBR samples for your perusal, as HTML files that can be viewed in any browser. The example HTML files are created by running the following script:

./scripts/tatoeba/local_html.sh

and are available at the following URLs (Markdown does not support clickable links, sorry!):

Domain robustness

language pair domain test set link
DEU-ENG it https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.it.html
DEU-ENG koran https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.koran.html
DEU-ENG law https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.law.html
DEU-ENG medical https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.medical.html
DEU-ENG subtitles https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.subtitles.html

Copy noise in training data

language pair amount of copy noise link
ARA-DEU 0.001 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.001.slice-test.html
ARA-DEU 0.005 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.005.slice-test.html
ARA-DEU 0.01 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.01.slice-test.html
ARA-DEU 0.05 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.05.slice-test.html
ARA-DEU 0.075 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.075.slice-test.html
ARA-DEU 0.1 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.1.slice-test.html
ARA-DEU 0.25 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.25.slice-test.html
ARA-DEU 0.5 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.5.slice-test.html
language pair amount of copy noise link
ENG-MAR 0.001 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.001.slice-test.html
ENG-MAR 0.005 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.005.slice-test.html
ENG-MAR 0.01 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.01.slice-test.html
ENG-MAR 0.05 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.05.slice-test.html
ENG-MAR 0.075 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.075.slice-test.html
ENG-MAR 0.1 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.1.slice-test.html
ENG-MAR 0.25 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.25.slice-test.html
ENG-MAR 0.5 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.5.slice-test.html
Owner
ZurichNLP
University of Zurich, Department of Computational Linguistics
ZurichNLP
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022