source code of “Visual Saliency Transformer” (ICCV2021)

Related tags

Deep LearningVST
Overview

Visual Saliency Transformer (VST)

source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, and Ling Shao.

created by Ni Zhang, email: [email protected]

avatar

Requirement

  1. Pytorch 1.6.0
  2. Torchvison 0.7.0

RGB VST for RGB Salient Object Detection

Data Preparation

Training Set

We use the training set of DUTS to train our VST for RGB SOD. Besides, we follow Egnet to generate contour maps of DUTS trainset for training. You can directly download the generated contour maps DUTS-TR-Contour from [baidu pan fetch code: ow76 | Google drive] and put it into RGB_VST/Data folder.

Testing Set

We use the testing set of DUTS, ECSSD, HKU-IS, PASCAL-S, DUT-O, and SOD to test our VST. After Downloading, put them into RGB_VST/Data folder.

Your RGB_VST/Data folder should look like this:

-- Data
   |-- DUTS
   |   |-- DUTS-TR
   |   |-- | DUTS-TR-Image
   |   |-- | DUTS-TR-Mask
   |   |-- | DUTS-TR-Contour
   |   |-- DUTS-TE
   |   |-- | DUTS-TE-Image
   |   |-- | DUTS-TE-Mask
   |-- ECSSD
   |   |--images
   |   |--GT
   ...

Training, Testing, and Evaluation

  1. cd RGB_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB VST Model

  1. cd RGB_VST
  2. Download our pretrained RGB_VST.pth[baidu pan fetch code: pe54 | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: 92t0 | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: de4k | Google drive].

RGB-D VST for RGB-D Salient Object Detection

Data Preparation

Training Set

We use 1,485 images from NJUD, 700 images from NLPR, and 800 images from DUTLF-Depth to train our VST for RGB-D SOD. Besides, we follow Egnet to generate corresponding contour maps for training. You can directly download the whole training set from here [baidu pan fetch code: 7vsw | Google drive] and put it into RGBD_VST/Data folder.

Testing Set

NJUD [baidu pan fetch code: 7mrn | Google drive]
NLPR [baidu pan fetch code: tqqm | Google drive]
DUTLF-Depth [baidu pan fetch code: 9jac | Google drive]
STERE [baidu pan fetch code: 93hl | Google drive]
LFSD [baidu pan fetch code: l2g4 | Google drive]
RGBD135 [baidu pan fetch code: apzb | Google drive]
SSD [baidu pan fetch code: j3v0 | Google drive]
SIP [baidu pan fetch code: q0j5 | Google drive]
ReDWeb-S

After Downloading, put them into RGBD_VST/Data folder.

Your RGBD_VST/Data folder should look like this:

-- Data
   |-- NJUD
   |   |-- trainset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |   |-- | contour
   |   |-- testset
   |   |-- | RGB
   |   |-- | depth
   |   |-- | GT
   |-- STERE
   |   |-- RGB
   |   |-- depth
   |   |-- GT
   ...

Training, Testing, and Evaluation

  1. cd RGBD_VST
  2. Download the pretrained T2T-ViT_t-14 model [baidu pan fetch code: 2u34 | Google drive] and put it into pretrained_model/ folder.
  3. Run python train_test_eval.py --Training True --Testing True --Evaluation True for training, testing, and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Testing on Our Pretrained RGB-D VST Model

  1. cd RGBD_VST
  2. Download our pretrained RGBD_VST.pth[baidu pan fetch code: zt0v | Google drive] and then put it in checkpoint/ folder.
  3. Run python train_test_eval.py --Testing True --Evaluation True for testing and evaluation. The predictions will be in preds/ folder and the evaluation results will be in result.txt file.

Our saliency maps can be downloaded from [baidu pan fetch code: jovk | Google drive].

SOTA Saliency Maps for Comparison

The saliency maps of the state-of-the-art methods in our paper can be downloaded from [baidu pan fetch code: i1we | Google drive].

Acknowledgement

We thank the authors of Egnet for providing codes of generating contour maps. We also thank Zhao Zhang for providing the efficient evaluation tool.

Citation

If you think our work is helpful, please cite

@inproceedings{liu2021VST, 
  title={Visual Saliency Transformer}, 
  author={Liu, Nian and Zhang, Ni and Han, Junwei and Shao, Ling},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}
Owner
Ni Zhang PhD student
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022