A general, feasible, and extensible framework for classification tasks.

Overview

Pytorch Classification

  • A general, feasible and extensible framework for 2D image classification.

Features

  • Easy to configure (model, hyperparameters)
  • Training progress monitoring and visualization
  • Weighted sampling / weighted loss / kappa loss / focal loss for imbalance dataset
  • Kappa metric for evaluating model on imbalance dataset
  • Different learning rate schedulers and warmup support
  • Data augmentation
  • Multiple GPUs support

Installation

Recommended environment:

  • python 3.8+
  • pytorch 1.7.1+
  • torchvision 0.8.2+
  • tqdm
  • munch
  • packaging
  • tensorboard

To install the dependencies, run:

$ git clone https://github.com/YijinHuang/pytorch-classification.git
$ cd pytorch-classification
$ pip install -r requirements.txt

How to use

1. Use one of the following two methods to build your dataset:

  • Folder-form dataset:

Organize your images as follows:

├── your_data_dir
    ├── train
        ├── class1
            ├── image1.jpg
            ├── image2.jpg
            ├── ...
        ├── class2
            ├── image3.jpg
            ├── image4.jpg
            ├── ...
        ├── class3
        ├── ...
    ├── val
    ├── test

Here, val and test directory have the same structure of train. Then replace the value of 'data_path' in BASIC_CONFIG in configs/default.yaml with path to your_data_dir and keep 'data_index' as null.

  • Dict-form dataset:

Define a dict as follows:

your_data_dict = {
    'train': [
        ('path/to/image1', 0), # use int. to represent the class of images (start from 0)
        ('path/to/image2', 0),
        ('path/to/image3', 1),
        ('path/to/image4', 2),
        ...
    ],
    'test': [
        ('path/to/image5', 0),
        ...
    ],
    'val': [
        ('path/to/image6', 0),
        ...
    ]
}

Then use pickle to save it:

import pickle
pickle.dump(your_data_dict, open('path/to/pickle/file', 'wb'))

Finally, replace the value of 'data_index' in BASIC_CONFIG in configs/default.yaml with 'path/to/pickle/file' and set 'data_path' as null.

2. Update your training configurations and hyperparameters in configs/default.yaml.

3. Run to train:

$ CUDA_VISIBLE_DEVICES=x python main.py

Optional arguments:

-c yaml_file      Specify the config file (default: configs/default.yaml)
-o                Overwrite save_path and log_path without warning
-p                Print configs before training

4. Monitor your training progress in website 127.0.0.1:6006 by running:

$ tensorborad --logdir=/path/to/your/log --port=6006

Tips to use tensorboard on a remote server

Owner
Eugene
Eugene
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022