Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Overview

Implicit Internal Video Inpainting

Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

paper | project website | 4K data | demo video

Introduction

Want to remove objects from a video without days of training and thousands of training videos? Try our simple but effective internal video inpainting method. The inpainting process is zero-shot and implicit, which does not need any pretraining on large datasets or optical-flow estimation. We further extend the proposed method to more challenging tasks: video object removal with limited annotated masks, and inpainting on ultra high-resolution videos (e.g., 4K videos).

TO DO

  • Release code for 4K video inpainting

Setup

Installation

git clone https://github.com/Tengfei-Wang/Implicit-Internal-Video-Inpainting.git
cd Implicit-Internal-Video-Inpainting

Environment

This code is based on tensorflow 2.x (tested on tensorflow 2.2, 2.4).

The environment can be simply set up by Anaconda:

conda create -n IIVI python=3.7
conda activate IIVI
conda install tensorflow-gpu tensorboard
pip install pyaml 
pip install opencv-python
pip install tensorflow-addons

Or, you can also set up the environment from the provided environment.yml:

conda env create -f environment.yml
conda activate IIVI

Usage

Quick Start

We provide an example sequence 'bmx-trees' in ./inputs/ . To try our method:

python train.py

The default iterations is set to 50,000 in config/train.yml, and the internal learning takes ~4 hours with a single GPU. During the learning process, you can use tensorboard to check the inpainting results by:

tensorboard --logdir ./exp/logs

After the training, the final results can be saved in ./exp/results/ by:

python test.py

You can also modify 'model_restore' in config/test.yml to save results with different checkpoints.

Try Your Own Data

Data preprocess

Before training, we advise to dilate the object masks first to exclude some edge pixels. Otherwise, the imperfectly-annotated masks would lead to artifacts in the object removal task.

You can generate and preprocess the masks by this script:

python scripts/preprocess_mask.py --annotation_path inputs/annotations/bmx-trees

Basic training

Modify the config/train.yml, which indicates the video path, log path, and training iterations,etc.. The training iterations depends on the video length, and it typically takes 30,000 ~ 80,000 iterations for convergence for 100-frame videos. By default, we only use reconstruction loss for training, and it works well for most cases.

python train.py

Improve the sharpness and consistency

For some hard videos, the former training may not produce a pleasing result. You can fine-tune the trained model with another losses. To this end, modify the 'model_restore' in config/test.yml to the checkpoint path of basic training. Also set ambiguity_loss or stabilization_loss to True. Then fine-tune the basic checkpoint for 20,000-40,000 iterations.

python train.py

Inference

Modify the ./config/test.yml, which indicates the video path, log path, and save path.

python test.py

Mask Propagation from A Single Frame

When you only annotate the object mask of one frame (or few frames), our method can propagate it to other frames automatically.

Modify ./config/train_mask.yml. We typically set the training iterations to 4,000 ~ 20,000, and the learning rate to 1e-5 ~ 1e-4.

python train_mask.py

After training, modify ./config/test_mask.yml, and then:

python test_mask.py

High-resolution Video Inpainting

Our 4K videos and mask annotations can be downloaded in 4K data.

More Results

Our results on 70 DAVIS videos (including failure cases) can be found here for your reference :)
If you need the PNG version of our uncompressed results, please contact the authors.

Citation

If you find this work useful for your research, please cite:

@inproceedings{ouyang2021video,
  title={Internal Video Inpainting by Implicit Long-range Propagation},
  author={Ouyang, Hao and Wang, Tengfei and Chen, Qifeng},
  booktitle={International Conference on Computer Vision (ICCV) },
  year={2021}
} 

If you are also interested in the image inpainting or internal learning, this paper can be also helpful :)

@inproceedings{wang2021image,
  title={Image Inpainting with External-internal Learning and Monochromic Bottleneck},
  author={Wang, Tengfei and Ouyang, Hao and Chen, Qifeng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5120--5129},
  year={2021}
}

Contact

Please send emails to Hao Ouyang or Tengfei Wang if there is any question

Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022