Augmented Traffic Control: A tool to simulate network conditions

Overview

Augmented Traffic Control

build-status-image pypi-version

Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/.

Overview

Augmented Traffic Control (ATC) is a tool to simulate network conditions. It allows controlling the connection that a device has to the internet. Developers can use ATC to test their application across varying network conditions, easily emulating high speed, mobile, and even severely impaired networks. Aspects of the connection that can be controlled include:

  • bandwidth
  • latency
  • packet loss
  • corrupted packets
  • packets ordering

In order to be able to shape the network traffic, ATC must be running on a device that routes the traffic and sees the real IP address of the device, like your network gateway for instance. This also allows any devices that route through ATC to be able to shape their traffic. Traffic can be shaped/unshaped using a web interface allowing any devices with a web browser to use ATC without the need for a client application.

ATC is made of multiple components that interact together:

  • atcd: The ATC daemon which is responsible for setting/unsetting traffic shaping. atcd exposes a Thrift interface to interact with it.
  • django-atc-api: A Django app based on Django Rest Framework that provides a RESTful interface to atcd.
  • django-atc-demo-ui: A Django app that provides a simple Web UI to use atc from a mobile phone.
  • django-atc-profile-storage: A Django app that can be used to save shaping profiles, making it easier to re-use them later without manually re-entering those settings.

By splitting ATC in sub-components, it make it easier to hack on it or build on top of it. While django-atc-demo-ui is shipped as part of ATC's main repository to allow people to be able to use ATC out of the box, by providing a REST API to atcd, it makes it relatively easy to interact with atcd via the command line and opens the path for the community to be able to build creative command line tools, web UI or mobile apps that interact with ATC.

ATC architecture

Requirements

Most requirements are handled automatically by pip, the packaging system used by ATC, and each ATC package may have different requirements and the README.md files of the respective packages should be checked for more details. Anyhow, some requirements apply to the overall codebase:

  • Python 2.7: Currently, ATC is only supported on python version 2.7.
  • Django 1.10: Currently, ATC is only supported using django version 1.10.

Installing ATC

The fact that ATC is splitted in multiple packages allows for multiple deployment scenarii. However, deploying all the packages on the same host is the simplest and most likely fitting most use cases.

To get more details on how to install/configure each packages, please refer to the packages' respective READMEs.

Packages

The easiest way to install ATC is by using pip.

pip install atc_thrift atcd django-atc-api django-atc-demo-ui django-atc-profile-storage

Django

Now that we have all the packages installed, we need to create a new Django project in which we will use our Django app.

django-admin startproject atcui
cd atcui

Now that we have our django project, we need to configure it to use our apps and we need to tell it how to route to our apps.

Open atcui/settings.py and enable the ATC apps by adding to INSTALLED_APPS:

INSTALLED_APPS = (
    ...
    # Django ATC API
    'rest_framework',
    'atc_api',
    # Django ATC Demo UI
    'bootstrap_themes',
    'django_static_jquery',
    'atc_demo_ui',
    # Django ATC Profile Storage
    'atc_profile_storage',
)

Now, open atcui/urls.py and enable routing to the ATC apps by adding the routes to urlpatterns:

...
...
from django.views.generic.base import RedirectView
from django.conf.urls import include

urlpatterns = [
    ...
    # Django ATC API
    url(r'^api/v1/', include('atc_api.urls')),
    # Django ATC Demo UI
    url(r'^atc_demo_ui/', include('atc_demo_ui.urls')),
    # Django ATC profile storage
    url(r'^api/v1/profiles/', include('atc_profile_storage.urls')),
    url(r'^$', RedirectView.as_view(url='/atc_demo_ui/', permanent=False)),
]

Finally, let's update the Django DB:

python manage.py migrate

Running ATC

All require packages should now be installed and configured. We now need to run the daemon and the UI interface. While we will run ATC straight from the command line in this example, you can refer to example sysvinit and upstart scripts.

atcd

atcd modifies network related settings and as such needs to run in privileged mode:

sudo atcd

Supposing eth0 is your interface to connect to the internet and eth1, your interface to connect to your lan, this should just work. If your setting is slightly different, use the command line arguments --atcd-wan and --atcd-lan to adapt to your configuration.

ATC UI

The UI on the other hand is a standard Django Web app and can be run as a normal user. Make sure you are in the directory that was created when you ran django-admin startproject atcui and run:

python manage.py runserver 0.0.0.0:8000

You should now be able to access the web UI at http://localhost:8000

ATC Code Structure

ATC source code is available under the atc directory, it is currently composed of:

  • atc_thrift the thrift interface's library
  • atcd the ATC daemon that runs on the router doing the traffic shaping
  • django-atc-api A django app that provides a RESTful interface to atcd
  • django-atc-demo-ui A django app that provides a simple demo UI leveraging the RESTful API
  • django-atc-profile-storage A django app that allows saving shaping profiles to DB allowing users to select their favorite profile from a list instead of re-entering all the profile details every time.

The chef directory contains 2 chef cookbooks:

  • atc A cookbook to deploy ATC. It also allows to deploy ATC in a Virtual Box VM in order to develop on ATC.
  • atclient Set up a Linux Desktop VM that can be used to test shaping end to end.

atcd

atcd is the daemon that runs on the router that does the shaping. Interaction with the daemon is done using thrift. The interface definition can be found in atc_thrift.thrift.

atc_thrift

atc_thrift defines the thrift interface to communicate with the atcd daemon.

django-atc-api

django-atc-api is a django app that provide a REST API to the atcd daemon. Web applications, command line tools can use the API in order to shape/unshape traffic.

django-atc-demo-ui

django-atc-demo-ui is a simple Web UI to enable/disable traffic shaping. The UI is mostly written in React

django-atc-profile-storage

django-atc-profile-storage allows saving profiles to DB. A typical use case will be to save a list of predefined/often used shaping settings that you want to be able to accessing in just a few clicks/taps.

Developing on ATC

To make ATC development easier, we use Virtual Box and Vagrant to provision and run a VM that will run the ATC daemon and the ATC UI from your git checkout.

Interacting with ATC will only shape the traffic within the VM and not on the host.

Setting up the environment

Note: vagrant is an easy way to set up a test environment, but virtualization will produce different results than a setup on bare-metal. We recommend using vagrant only for testing/development and using bare-metal for setups which require realistic shaping settings.

You will need to install VirtualBox, Vagrant and a couple of plugins:

  • VirtualBox
  • Vagrant
  • Chef DK
  • Install some vagrant plugins:
  • vagrant plugin install vagrant-berkshelf --plugin-version '>= 2.0.1'
  • vagrant plugin install vagrant-omnibus
  • Clone this repo: git clone [email protected]:facebook/augmented-traffic-control.git atc

Running ATC

Once in the repo, go to the chef/atc directory and run:

vagrant up trusty

This will take some time before it completes, once the VM is provision, SSH into it:

vagrant ssh trusty

You should now be able to access ATC at: http://localhost:8080/

Using the Sample Profiles

Once you've got ATC up and running, you can run the script utils/restore-profiles.sh to setup the set of default profiles.

The script needs to be passed a hostname:port with the location of your ATC instance:

utils/restore-profiles.sh localhost:8080

After doing this, you should see the 10 sample profiles listed below in your ATC instance:

  • 2G - Developing Rural
  • 2G - Developing Urban
  • 3G - Average
  • 3G - Good
  • Cable
  • DSL
  • Edge - Average
  • Edge - Good
  • Edge - Lossy
  • No Connectivity

Naturally, you cannot improve your natural network speed by selecting a faster profile than your service. For example, selecting the Cable profile will not make your network faster if your natural connection speed resembles DSL more closely.

Hacking on the code

Hacking on ATC is done from the host and tested in the VM. In order to reflect the changes, you will need to start the services manually.

Both atcd and atcui have their python libraries installed in a python virtualenv so you will need to activate the environment in order to be able to run the services.

The virtualenv is installed in /usr/local/atc/venv/bin/activate .

source /usr/local/atc/venv/bin/activate

Running the daemon

The atcd daemon is running under the root user privileges, all operations below needs to be done as root.

To run the daemon manually, first make sure it is not running in the background:

service atcd stop

And run the daemon:

atcd

Once you are happy with your changes and you want to test them, you will need to kill the daemon and restart it in order to apply the changes.

Running the API/UI

This is a django project and, when running the django built-in HTTP server, will detect code changes and reload automatically.

To run the HTTP REST API and UI:

cd /var/django && python manage.py runserver 0.0.0.0:8000
Owner
Meta Archive
These projects have been archived and are generally unsupported, but are still available to view and use
Meta Archive
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022