Pneumonia Detection using machine learning - with PyTorch

Overview

Pneumonia Detection

Pneumonia Detection using machine learning.

Training was done in colab:

Training In Colab


DEMO:

gif

Result (Confusion Matrix):

confusion matrix

Data

I uploaded my dataset to kaggle I used a modified version of this dataset from kaggle. Instead of NORMAL and PNEUMONIA I split the PNEUMONIA dataset to BACTERIAL PNUEMONIA and VIRAL PNEUMONIA. This way the data is more evenly distributed and I can distinguish between viral and bacterial pneumonia. I also combined the validation dataset with the test dataset because the validation dataset only had 8 images per class.

This is the resulting distribution:

data distribution

Processing and Augmentation

I resized the images to 150x150 and because some images already were grayscale I also transformed all the images to grayscale.

Additionaly I applied the following transformations/augmentations on the training data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(45)

and those transformations on the test data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),

This is the resulting data:

sample images

I also used one-hot encoding for the labels!



Model

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 16, 148, 148]             160
              ReLU-2         [-1, 16, 148, 148]               0
       BatchNorm2d-3         [-1, 16, 148, 148]              32
            Conv2d-4         [-1, 16, 146, 146]           2,320
              ReLU-5         [-1, 16, 146, 146]               0
       BatchNorm2d-6         [-1, 16, 146, 146]              32
         MaxPool2d-7           [-1, 16, 73, 73]               0
            Conv2d-8           [-1, 32, 71, 71]           4,640
              ReLU-9           [-1, 32, 71, 71]               0
      BatchNorm2d-10           [-1, 32, 71, 71]              64
           Conv2d-11           [-1, 32, 69, 69]           9,248
             ReLU-12           [-1, 32, 69, 69]               0
      BatchNorm2d-13           [-1, 32, 69, 69]              64
        MaxPool2d-14           [-1, 32, 34, 34]               0
           Conv2d-15           [-1, 64, 32, 32]          18,496
             ReLU-16           [-1, 64, 32, 32]               0
      BatchNorm2d-17           [-1, 64, 32, 32]             128
           Conv2d-18           [-1, 64, 30, 30]          36,928
             ReLU-19           [-1, 64, 30, 30]               0
      BatchNorm2d-20           [-1, 64, 30, 30]             128
        MaxPool2d-21           [-1, 64, 15, 15]               0
           Conv2d-22          [-1, 128, 13, 13]          73,856
             ReLU-23          [-1, 128, 13, 13]               0
      BatchNorm2d-24          [-1, 128, 13, 13]             256
           Conv2d-25          [-1, 128, 11, 11]         147,584
             ReLU-26          [-1, 128, 11, 11]               0
      BatchNorm2d-27          [-1, 128, 11, 11]             256
        MaxPool2d-28            [-1, 128, 5, 5]               0
          Flatten-29                 [-1, 3200]               0
           Linear-30                 [-1, 4096]      13,111,296
             ReLU-31                 [-1, 4096]               0
          Dropout-32                 [-1, 4096]               0
           Linear-33                 [-1, 4096]      16,781,312
             ReLU-34                 [-1, 4096]               0
          Dropout-35                 [-1, 4096]               0
           Linear-36                    [-1, 3]          12,291
          Softmax-37                    [-1, 3]               0
================================================================
Total params: 30,199,091
Trainable params: 30,199,091
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.09
Forward/backward pass size (MB): 27.95
Params size (MB): 115.20
Estimated Total Size (MB): 143.24
----------------------------------------------------------------

Visualization using Streamlit

The webapp is not hosted because the model is too large. I'd have to host it on a server. This is just to visualize.

Owner
Wilhelm Berghammer
Artificial Intelligence Student @ JKU (1st year)
Wilhelm Berghammer
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021