Pneumonia Detection using machine learning - with PyTorch

Overview

Pneumonia Detection

Pneumonia Detection using machine learning.

Training was done in colab:

Training In Colab


DEMO:

gif

Result (Confusion Matrix):

confusion matrix

Data

I uploaded my dataset to kaggle I used a modified version of this dataset from kaggle. Instead of NORMAL and PNEUMONIA I split the PNEUMONIA dataset to BACTERIAL PNUEMONIA and VIRAL PNEUMONIA. This way the data is more evenly distributed and I can distinguish between viral and bacterial pneumonia. I also combined the validation dataset with the test dataset because the validation dataset only had 8 images per class.

This is the resulting distribution:

data distribution

Processing and Augmentation

I resized the images to 150x150 and because some images already were grayscale I also transformed all the images to grayscale.

Additionaly I applied the following transformations/augmentations on the training data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(45)

and those transformations on the test data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),

This is the resulting data:

sample images

I also used one-hot encoding for the labels!



Model

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 16, 148, 148]             160
              ReLU-2         [-1, 16, 148, 148]               0
       BatchNorm2d-3         [-1, 16, 148, 148]              32
            Conv2d-4         [-1, 16, 146, 146]           2,320
              ReLU-5         [-1, 16, 146, 146]               0
       BatchNorm2d-6         [-1, 16, 146, 146]              32
         MaxPool2d-7           [-1, 16, 73, 73]               0
            Conv2d-8           [-1, 32, 71, 71]           4,640
              ReLU-9           [-1, 32, 71, 71]               0
      BatchNorm2d-10           [-1, 32, 71, 71]              64
           Conv2d-11           [-1, 32, 69, 69]           9,248
             ReLU-12           [-1, 32, 69, 69]               0
      BatchNorm2d-13           [-1, 32, 69, 69]              64
        MaxPool2d-14           [-1, 32, 34, 34]               0
           Conv2d-15           [-1, 64, 32, 32]          18,496
             ReLU-16           [-1, 64, 32, 32]               0
      BatchNorm2d-17           [-1, 64, 32, 32]             128
           Conv2d-18           [-1, 64, 30, 30]          36,928
             ReLU-19           [-1, 64, 30, 30]               0
      BatchNorm2d-20           [-1, 64, 30, 30]             128
        MaxPool2d-21           [-1, 64, 15, 15]               0
           Conv2d-22          [-1, 128, 13, 13]          73,856
             ReLU-23          [-1, 128, 13, 13]               0
      BatchNorm2d-24          [-1, 128, 13, 13]             256
           Conv2d-25          [-1, 128, 11, 11]         147,584
             ReLU-26          [-1, 128, 11, 11]               0
      BatchNorm2d-27          [-1, 128, 11, 11]             256
        MaxPool2d-28            [-1, 128, 5, 5]               0
          Flatten-29                 [-1, 3200]               0
           Linear-30                 [-1, 4096]      13,111,296
             ReLU-31                 [-1, 4096]               0
          Dropout-32                 [-1, 4096]               0
           Linear-33                 [-1, 4096]      16,781,312
             ReLU-34                 [-1, 4096]               0
          Dropout-35                 [-1, 4096]               0
           Linear-36                    [-1, 3]          12,291
          Softmax-37                    [-1, 3]               0
================================================================
Total params: 30,199,091
Trainable params: 30,199,091
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.09
Forward/backward pass size (MB): 27.95
Params size (MB): 115.20
Estimated Total Size (MB): 143.24
----------------------------------------------------------------

Visualization using Streamlit

The webapp is not hosted because the model is too large. I'd have to host it on a server. This is just to visualize.

Owner
Wilhelm Berghammer
Artificial Intelligence Student @ JKU (1st year)
Wilhelm Berghammer
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022