Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

Related tags

Deep LearningSMSR
Overview

SMSR

Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference"

[arXiv]

Highlights

  • Locate and skip redundant computation in SR networks at a fine-grained level for efficient inference.
  • Maintain state-of-the-art performance with significant FLOPs reduction and a speedup on mobile devices.
  • Efficient implementation of sparse convolution based on original Pytorch APIs for easier migration and deployment.

Network Architecture

Implementation of Sparse Convolution

For easier migration and deployment, we use an efficient implementation of sparse convolution based on original Pytorch APIs rather than the commonly applied CUDA-based implementation. Specifically, sparse features are first extracted from the input, as shown in the following figure. Then, matrix multiplication is executed to produce the output features.

Requirements

  • Python 3.6
  • PyTorch == 1.1.0
  • numpy
  • skimage
  • imageio
  • matplotlib
  • cv2

Train

Prepare training data

  1. Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

  2. Specify '--dir_data' based on the HR and LR images path. In option.py, '--ext' is set as 'sep_reset', which first convert .png to .npy. If all the training images (.png) are converted to .npy files, then set '--ext sep' to skip converting files.

For more informaiton, please refer to EDSR(PyTorch).

Begin to train

python main.py --model SMSR --save SMSR_X2 --scale 2 --patch_size 96 --batch_size 16

Test

Prepare test data

Download benchmark datasets (e.g., Set5, Set14 and other test sets) and prepare HR/LR images in testsets/benchmark following the example of testsets/benchmark/Set5.

Demo

python main.py --dir_data testsets --data_test Set5 --scale 2 --model SMSR --save SMSR_X2 --pre_train experiment/SMSR_X2/model/model_1000.pt --test_only --save_results

Results

Visualization of Sparse Masks

Citation

@InProceedings{Wang2020Exploring,
  author    = {Wang, Longguang and Dong, Xiaoyu and Wang, Yingqian and Ying, Xinyi and Lin, Zaiping and An, Wei and Guo, Yulan},
  title     = {Exploring Sparsity in Image Super-Resolution for Efficient Inference},
  booktitle = {CVPR},
  year      = {2021},
}

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing the codes.

Owner
Longguang Wang
Longguang Wang
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022