Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Overview

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have updated this code for newer versions of Tensorflow and Python - see information below and Issues section.


This repository contains code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks. For an intuitive overview of the paper, read the blog post.

Looking for test set output?

The test set output of the models described in the paper can be found here.

Looking for pretrained model?

A pretrained model is available here:

(The only difference between these two is the naming of some of the variables in the checkpoint. Tensorflow 1.0 uses lstm_cell/biases and lstm_cell/weights whereas Tensorflow 1.2.1 uses lstm_cell/bias and lstm_cell/kernel).

Note: This pretrained model is not the exact same model that is reported in the paper. That is, it is the same architecture, trained with the same settings, but resulting from a different training run. Consequently this pretrained model has slightly lower ROUGE scores than those reported in the paper. This is probably due to us slightly overfitting to the randomness in our original experiments (in the original experiments we tried various hyperparameter settings and selected the model that performed best). Repeating the experiment once with the same settings did not perform quite as well. Better results might be obtained from further hyperparameter tuning.

Why can't you release the trained model reported in the paper? Due to changes to the code between the original experiments and the time of releasing the code (e.g. TensorFlow version changes, lots of code cleanup), it is not possible to release the original trained model files.

Looking for CNN / Daily Mail data?

Instructions are here.

About this code

This code is based on the TextSum code from Google Brain.

This code was developed for Tensorflow 0.12, but has been updated to run with Tensorflow 1.0. In particular, the code in attention_decoder.py is based on tf.contrib.legacy_seq2seq_attention_decoder, which is now outdated. Tensorflow 1.0's new seq2seq library probably provides a way to do this (as well as beam search) more elegantly and efficiently in the future.

Python 3 version: This code is in Python 2. If you want a Python 3 version, see @becxer's fork.

How to run

Get the dataset

To obtain the CNN / Daily Mail dataset, follow the instructions here. Once finished, you should have chunked datafiles train_000.bin, ..., train_287.bin, val_000.bin, ..., val_013.bin, test_000.bin, ..., test_011.bin (each contains 1000 examples) and a vocabulary file vocab.

Note: If you did this before 7th May 2017, follow the instructions here to correct a bug in the process.

Run training

To train your model, run:

python run_summarization.py --mode=train --data_path=/path/to/chunked/train_* --vocab_path=/path/to/vocab --log_root=/path/to/a/log/directory --exp_name=myexperiment

This will create a subdirectory of your specified log_root called myexperiment where all checkpoints and other data will be saved. Then the model will start training using the train_*.bin files as training data.

Warning: Using default settings as in the above command, both initializing the model and running training iterations will probably be quite slow. To make things faster, try setting the following flags (especially max_enc_steps and max_dec_steps) to something smaller than the defaults specified in run_summarization.py: hidden_dim, emb_dim, batch_size, max_enc_steps, max_dec_steps, vocab_size.

Increasing sequence length during training: Note that to obtain the results described in the paper, we increase the values of max_enc_steps and max_dec_steps in stages throughout training (mostly so we can perform quicker iterations during early stages of training). If you wish to do the same, start with small values of max_enc_steps and max_dec_steps, then interrupt and restart the job with larger values when you want to increase them.

Run (concurrent) eval

You may want to run a concurrent evaluation job, that runs your model on the validation set and logs the loss. To do this, run:

python run_summarization.py --mode=eval --data_path=/path/to/chunked/val_* --vocab_path=/path/to/vocab --log_root=/path/to/a/log/directory --exp_name=myexperiment

Note: you want to run the above command using the same settings you entered for your training job.

Restoring snapshots: The eval job saves a snapshot of the model that scored the lowest loss on the validation data so far. You may want to restore one of these "best models", e.g. if your training job has overfit, or if the training checkpoint has become corrupted by NaN values. To do this, run your train command plus the --restore_best_model=1 flag. This will copy the best model in the eval directory to the train directory. Then run the usual train command again.

Run beam search decoding

To run beam search decoding:

python run_summarization.py --mode=decode --data_path=/path/to/chunked/val_* --vocab_path=/path/to/vocab --log_root=/path/to/a/log/directory --exp_name=myexperiment

Note: you want to run the above command using the same settings you entered for your training job (plus any decode mode specific flags like beam_size).

This will repeatedly load random examples from your specified datafile and generate a summary using beam search. The results will be printed to screen.

Visualize your output: Additionally, the decode job produces a file called attn_vis_data.json. This file provides the data necessary for an in-browser visualization tool that allows you to view the attention distributions projected onto the text. To use the visualizer, follow the instructions here.

If you want to run evaluation on the entire validation or test set and get ROUGE scores, set the flag single_pass=1. This will go through the entire dataset in order, writing the generated summaries to file, and then run evaluation using pyrouge. (Note this will not produce the attn_vis_data.json files for the attention visualizer).

Evaluate with ROUGE

decode.py uses the Python package pyrouge to run ROUGE evaluation. pyrouge provides an easier-to-use interface for the official Perl ROUGE package, which you must install for pyrouge to work. Here are some useful instructions on how to do this:

Note: As of 18th May 2017 the website for the official Perl package appears to be down. Unfortunately you need to download a directory called ROUGE-1.5.5 from there. As an alternative, it seems that you can get that directory from here (however, the version of pyrouge in that repo appears to be outdated, so best to install pyrouge from the official source).

Tensorboard

Run Tensorboard from the experiment directory (in the example above, myexperiment). You should be able to see data from the train and eval runs. If you select "embeddings", you should also see your word embeddings visualized.

Help, I've got NaNs!

For reasons that are difficult to diagnose, NaNs sometimes occur during training, making the loss=NaN and sometimes also corrupting the model checkpoint with NaN values, making it unusable. Here are some suggestions:

  • If training stopped with the Loss is not finite. Stopping. exception, you can just try restarting. It may be that the checkpoint is not corrupted.
  • You can check if your checkpoint is corrupted by using the inspect_checkpoint.py script. If it says that all values are finite, then your checkpoint is OK and you can try resuming training with it.
  • The training job is set to keep 3 checkpoints at any one time (see the max_to_keep variable in run_summarization.py). If your newer checkpoint is corrupted, it may be that one of the older ones is not. You can switch to that checkpoint by editing the checkpoint file inside the train directory.
  • Alternatively, you can restore a "best model" from the eval directory. See the note Restoring snapshots above.
  • If you want to try to diagnose the cause of the NaNs, you can run with the --debug=1 flag turned on. This will run Tensorflow Debugger, which checks for NaNs and diagnoses their causes during training.
Owner
Abi See
Stanford PhD student in Natural Language Processing
Abi See
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022