This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Overview

OpenVINO Inference API

This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Models in Intermediate Representation(IR) format, converted using the Intel® OpenVINO™ toolkit v2021.1, can be deployed in this API. Currently, OpenVINO supports conversion for Models trained in several Machine Learning frameworks including Caffe, Tensorflow etc. Please refer to the OpenVINO documentation for further details on converting your Model.

load model

Prerequisites

  • OS:
    • Ubuntu 18.04
    • Windows 10 pro/enterprise
  • Docker

Check for prerequisites

To check if you have docker-ce installed:

docker --version

Install prerequisites

Ubuntu

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

In order to build the project run the following command from the project's root directory:

sudo docker build -t openvino_inference_api .

Behind a proxy

sudo docker build --build-arg http_proxy='' --build-arg https_proxy='' -t openvino_inference_api .

Run The Docker Container

If you wish to deploy this API using docker, please issue the following run command.

To run the API, go the to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/models:/models -v $(pwd)/models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

Using Windows based docker:

docker run -itv ${PWD}\models:/models -v ${PWD}\models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

The <docker_host_port> can be any unique port of your choice.

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again.

load model

/detect (POST)

Performs inference on an image using the specified model and returns the bounding-boxes of the objects in a JSON format.

detect image

/models/{model_name}/predict_image (POST)

Performs inference on an image using the specified model, draws bounding boxes on the image, and returns the resulting image as response.

predict image

P.S: If you are using custom endpoints like /detect, /predict_image, you should always use the /load endpoint first and then use /detect

Model structure

The folder "models" contains subfolders of all the models to be loaded. Inside each subfolder there should be a:

  • bin file (<your_converted_model>.bin): contains the model weights

  • xml file (<your_converted_model>.xml): describes the network topology

  • class file (classes.txt): contains the names of the object classes, which should be in the below format

        class1
        class2
        ...
    
  • config.json (This is a json file containing information about the model)

      {
          "inference_engine_name": "openvino_detection",
          "confidence": 60,
          "predictions": 15,
          "number_of_classes": 2,
          "framework": "openvino",
          "type": "detection",
          "network": "fasterrcnn"
      }

    P.S:

    • You can change confidence and predictions values while running the API
    • The API will return bounding boxes with a confidence higher than the "confidence" value. A high "confidence" can show you only accurate predictions

The "models" folder structure should be similar to as shown below:

│──models
  │──model_1
  │  │──<model_1>.bin
  │  │──<model_1>.xml
  │  │──classes.txt
  │  │──config.json
  │
  │──model_2
  │  │──<model_2>.bin
  │  │──<model_2>.xml
  │  │──classes.txt
  │  │──config.json

Acknowledgements

OpenVINO Toolkit

intel.com

robotron.de

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022