This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Overview

OpenVINO Inference API

This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Models in Intermediate Representation(IR) format, converted using the Intel® OpenVINO™ toolkit v2021.1, can be deployed in this API. Currently, OpenVINO supports conversion for Models trained in several Machine Learning frameworks including Caffe, Tensorflow etc. Please refer to the OpenVINO documentation for further details on converting your Model.

load model

Prerequisites

  • OS:
    • Ubuntu 18.04
    • Windows 10 pro/enterprise
  • Docker

Check for prerequisites

To check if you have docker-ce installed:

docker --version

Install prerequisites

Ubuntu

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

In order to build the project run the following command from the project's root directory:

sudo docker build -t openvino_inference_api .

Behind a proxy

sudo docker build --build-arg http_proxy='' --build-arg https_proxy='' -t openvino_inference_api .

Run The Docker Container

If you wish to deploy this API using docker, please issue the following run command.

To run the API, go the to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/models:/models -v $(pwd)/models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

Using Windows based docker:

docker run -itv ${PWD}\models:/models -v ${PWD}\models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

The <docker_host_port> can be any unique port of your choice.

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again.

load model

/detect (POST)

Performs inference on an image using the specified model and returns the bounding-boxes of the objects in a JSON format.

detect image

/models/{model_name}/predict_image (POST)

Performs inference on an image using the specified model, draws bounding boxes on the image, and returns the resulting image as response.

predict image

P.S: If you are using custom endpoints like /detect, /predict_image, you should always use the /load endpoint first and then use /detect

Model structure

The folder "models" contains subfolders of all the models to be loaded. Inside each subfolder there should be a:

  • bin file (<your_converted_model>.bin): contains the model weights

  • xml file (<your_converted_model>.xml): describes the network topology

  • class file (classes.txt): contains the names of the object classes, which should be in the below format

        class1
        class2
        ...
    
  • config.json (This is a json file containing information about the model)

      {
          "inference_engine_name": "openvino_detection",
          "confidence": 60,
          "predictions": 15,
          "number_of_classes": 2,
          "framework": "openvino",
          "type": "detection",
          "network": "fasterrcnn"
      }

    P.S:

    • You can change confidence and predictions values while running the API
    • The API will return bounding boxes with a confidence higher than the "confidence" value. A high "confidence" can show you only accurate predictions

The "models" folder structure should be similar to as shown below:

│──models
  │──model_1
  │  │──<model_1>.bin
  │  │──<model_1>.xml
  │  │──classes.txt
  │  │──config.json
  │
  │──model_2
  │  │──<model_2>.bin
  │  │──<model_2>.xml
  │  │──classes.txt
  │  │──config.json

Acknowledgements

OpenVINO Toolkit

intel.com

robotron.de

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023