Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

Related tags

Deep LearningUTNet
Overview

UTNet (Accepted at MICCAI 2021)

Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

Introduction

Transformer architecture has emerged to be successful in a number of natural language processing tasks. However, its applications to medical vision remain largely unexplored. In this study, we present UTNet, a simple yet powerful hybrid Transformer architecture that integrates self-attention into a convolutional neural network for enhancing medical image segmentation. UTNet applies self-attention modules in both encoder and decoder for capturing long-range dependency at dif- ferent scales with minimal overhead. To this end, we propose an efficient self-attention mechanism along with relative position encoding that reduces the complexity of self-attention operation significantly from O(n2) to approximate O(n). A new self-attention decoder is also proposed to recover fine-grained details from the skipped connections in the encoder. Our approach addresses the dilemma that Transformer requires huge amounts of data to learn vision inductive bias. Our hybrid layer design allows the initialization of Transformer into convolutional networks without a need of pre-training. We have evaluated UTNet on the multi- label, multi-vendor cardiac magnetic resonance imaging cohort. UTNet demonstrates superior segmentation performance and robustness against the state-of-the-art approaches, holding the promise to generalize well on other medical image segmentations.

image image

Supportting models

UTNet

TransUNet

ResNet50-UTNet

ResNet50-UNet

SwinUNet

To be continue ...

Getting Started

Currently, we only support M&Ms dataset.

Prerequisites

Python >= 3.6
pytorch = 1.8.1
SimpleITK = 2.0.2
numpy = 1.19.5
einops = 0.3.2

Preprocess

Resample all data to spacing of 1.2x1.2 mm in x-y plane. We don't change the spacing of z-axis, as UTNet is a 2D network. Then put all data into 'dataset/'

Training

The M&M dataset provides data from 4 venders, where vendor AB are provided for training while ABCD for testing. The '--domain' is used to control using which vendor for training. '--domain A' for using vender A only. '--domain B' for using vender B only. '--domain AB' for using both vender A and B. For testing, all 4 venders will be used.

UTNet

For default UTNet setting, training with:

python train_deep.py -m UTNet -u EXP_NAME --data_path YOUR_OWN_PATH --reduce_size 8 --block_list 1234 --num_blocks 1,1,1,1 --domain AB --gpu 0 --aux_loss

Or you can use '-m UTNet_encoder' to use transformer blocks in the encoder only. This setting is more stable than the default setting in some cases.

To optimize UTNet in your own task, there are several hyperparameters to tune:

'--block_list': indicates apply transformer blocks in which resolution. The number means the number of downsamplings, e.g. 3,4 means apply transformer blocks in features after 3 and 4 times downsampling. Apply transformer blocks in higher resolution feature maps will introduce much more computation.

'--num_blocks': indicates the number of transformer blocks applied in each level. e.g. block_list='3,4', num_blocks=2,4 means apply 2 transformer blocks in 3-times downsampling level and apply 4 transformer blocks in 4-time downsampling level.

'--reduce_size': indicates the size of downsampling for efficient attention. In our experiments, reduce_size 8 and 16 don't have much difference, but 16 will introduce more computation, so we choost 8 as our default setting. 16 might have better performance in other applications.

'--aux_loss': applies deep supervision in training, will introduce some computation overhead but has slightly better performance.

Here are some recomended parameter setting:

--block_list 1234 --num_blocks 1,1,1,1

Our default setting, most efficient setting. Suitable for tasks with limited training data, and most errors occur in the boundary of ROI where high resolution information is important.

--block_list 1234 --num_blocks 1,1,4,8

Similar to the previous one. The model capacity is larger as more transformer blocks are including, but needs larger dataset for training.

--block_list 234 --num_blocks 2,4,8

Suitable for tasks that has complex contexts and errors occurs inside ROI. More transformer blocks can help learn higher-level relationship.

Feel free to try other combinations of the hyperparameter like base_chan, reduce_size and num_blocks in each level etc. to trade off between capacity and efficiency to fit your own tasks and datasets.

TransUNet

We borrow code from the original TransUNet repo and fit it into our training framework. If you want to use pre-trained weight, please download from the original repo. The configuration is not parsed by command line, so if you want change the configuration of TransUNet, you need change it inside the train_deep.py.

python train_deep.py -m TransUNet -u EXP_NAME --data_path YOUR_OWN_PATH --gpu 0

ResNet50-UTNet

For fair comparison with TransUNet, we implement the efficient attention proposed in UTNet into ResNet50 backbone, which is basically append transformer blocks into specified level after ResNet blocks. ResNet50-UTNet is slightly better in performance than the default UTNet in M&M dataset.

python train_deep.py -m ResNet_UTNet -u EXP_NAME --data_path YOUR_OWN_PATH --reduce_size 8 --block_list 123 --num_blocks 1,1,1 --gpu 0

Similar to UTNet, this is the most efficient setting, suitable for tasks with limited training data.

--block_list 23 --num_blocks 2,4

Suitable for tasks that has complex contexts and errors occurs inside ROI. More transformer blocks can help learn higher-level relationship.

ResNet50-UNet

If you don't use Transformer blocks in ResNet50-UTNet, it is actually ResNet50-UNet. So you can use this as the baseline to compare the performance improvement from Transformer for fair comparision with TransUNet and our UTNet.

python train_deep.py -m ResNet_UTNet -u EXP_NAME --data_path YOUR_OWN_PATH --block_list ''  --gpu 0

SwinUNet

Download pre-trained model from the origin repo. As Swin-Transformer's input size is related to window size and is hard to change after pretraining, so we adapt our input size to 224. Without pre-training, SwinUNet's performance is very low.

python train_deep.py -m SwinUNet -u EXP_NAME --data_path YOUR_OWN_PATH --crop_size 224

Citation

If you find this repo helps, please kindly cite our paper, thanks!

@inproceedings{gao2021utnet,
  title={UTNet: a hybrid transformer architecture for medical image segmentation},
  author={Gao, Yunhe and Zhou, Mu and Metaxas, Dimitris N},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={61--71},
  year={2021},
  organization={Springer}
}
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments πŸ’Ή & sharing πŸ˜€ !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
πŸ“š A collection of Jupyter notebooks for learning and experimenting with OpenVINO πŸ‘“

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022