Make Watson Assistant send messages to your Discord Server

Overview

Make Watson Assistant send messages to your Discord Server

Prerequisites

  1. Sign up for an IBM Cloud account.
  2. Fill in the required information and press the „Create Account“ button.
  3. After you submit your registration, you will receive an e-mail from the IBM Cloud team with details about your account. In this e-mail, you will need to click the link provided to confirm your registration.
  4. Now you should be able to login to your new IBM Cloud account ;-)
  5. Create a Discord account, as well your own Discord server (both are free of charge).

Activate Webhooks in Discord

We want to enable webhooks in our Discord server's settings, which will be used by Watson Assistant to send messages.

  1. Go to your server's settings
  2. Navigate to Integrations
  3. Create a new Webhook, and copy its URL

Note: Discord does not require any additional Authentification, which means that anyone who has the URL can use the Webhook. Ensure that only you, and people you trust have access to it.

Set up your cloud function

Create cloud function

We want to set up a cloud function, which Watson Assistant will be able to access. To do that, you need to go to your IBM Cloud Dashboard, and select Functions.

Alternatively you can click here to access the IBM Cloud functions.

Now you can create a new Action. Give it a sensible name, select python as your runtime, and click create.

Create Cloud Function Action

Paste in the code that can be found here, change the value of discordurl to your URL, and save your changes.

Test cloud function

If you want to test it, you can click on Invoke with parameter, paste in the input below, click apply, and press Invoke.

{
    "content" : "this is a test message sent by your cloud function"
}

If the message was sent successfully, the result should look like this.

Enable as Web Action

Now we need to create an endpoint, which will be used by Watson Assistant to invoce your function.

On the left side, click Endpoints and check the box called Enable as Web Action. Press save, and copy the URL.

Set up your Assistant

Set up Watson Assistant

Go back to your Dashboard, and type Watson Assistant into the search bar. If you already have a Watson Assistant service you can use it, otherwise you can create a free lite version either by clicking Watson Assistant under the Catalog Results Section or following this link.

Create your own Skill

Afterwards launch your Watson Assistant Service, and look for Skills on the left.

If you can't find it, click on the profile icon in the upper right corner, and click Switch to classic experience.

Create a new skill, select Dialog skill and click next. Select Upload skill and provide the skill-Connect-to-Discord.json file.

Enable Webhooks

Before you can test your assistant, you need to provide the cloud funtion's URL.

Click on Options->Webhooks, paste in the URL, and ADD A .json AT THE END.

We could use Discord's webhook link direcly, without adding a .json, and it would send the message as well. However, Discord doesn't return anything (that Watson Assistant can understand), which would prevent us from informing the user of our assistant, that the message was sent correctly.

Test your assistant

Now you can click on the Try it button and test whether the assistant is working correctly.


An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022