Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Overview

Implicit Representations of Meaning in Neural Language Models

Preliminaries

Create and set up a conda environment as follows:

conda create -n state-probes python=3.7
conda activate state-probes
pip install -r requirements.txt

Install the appropriate torch 1.7.0 for your cuda version:

conda install pytorch==1.7.0 cudatoolkit=<cuda_version> -c pytorch

Before running any command below, run

export PYTHONPATH=.
export TOKENIZERS_PARALLELISM=true

Data

The Alchemy data is downloaded from their website.

wget https://nlp.stanford.edu/projects/scone/scone.zip
unzip scone.zip

The synthetic version of alchemy was generated by running:

echo 0 > id #the code requires a file called id with a number in it ...
python alchemy_artificial_generator.py --num_scenarios 3600 --output synth_alchemy_train
python alchemy_artificial_generator.py --num_scenarios 500 --output synth_alchemy_dev
python alchemy_artificial_generator.py --num_scenarios 900 --output synth_alchemy_test

You can also just download our generated data through:

wget http://web.mit.edu/bzl/www/synth_alchemy.tar.gz
tar -xzvf synth_alchemy.tar.gz

The Textworld data is under

wget http://web.mit.edu/bzl/www/tw_data.tar.gz
tar -xzvf tw_data.tar.gz

LM Training

To train a BART or T5 model on Alchemy data

python scripts/train_alchemy.py \
    --arch [t5|bart] [--no_pretrain] \
    [--synthetic] --encode_init_state NL

Saves model checkpoints under sconeModels/*.

To train a BART or T5 model on Textworld data

python scripts/train_textworld.py \
    --arch [t5/bart] [--no_pretrain] \
    --data tw_data/simple_traces --gamefile tw_games/simple_games

Saves model checkpoints nder twModels/*.

Probe Training & Evaluation

Alchemy

The main probe command is as follows:

python scripts/probe_alchemy.py \
    --arch [bart|t5] --lm_save_path <path_to_lm_checkpoint> [--no_pretrain] \
    --encode_init_state NL --nonsynthetic \
    --probe_target single_beaker_final.NL --localizer_type single_beaker_init_full \
    --probe_type linear --probe_agg_method avg \
    --encode_tgt_state NL.[bart|t5] --tgt_agg_method avg \
    --batchsize 128 --eval_batchsize 1024 --lr 1e-4

For evaluation, add --eval_only --probe_save_path <path_to_probe_checkpoint>. This will save model predictions to a .jsonl file under the same directory as the probe checkpoint.

Add --control_input for No LM experiment.

Change --probe_target to single_beaker_init.NL to decode initial state.

For localization experiments, set --localizer_type single_beaker_init_{$i}.offset{$off} for some token i in {article, pos.[R0|R1|R2], beaker.[R0|R1], verb, amount, color, end_punct} and some integer offset off between 0 and 6.

Saves probe checkpoints under probe_models_alchemy/*.

Intervention experiment results follow from running the script:

python scripts/intervention.py \
    --arch [bart|t5] \
    --encode_init_state NL \
    --create_type drain_1 \
    --lm_save_path <path_to_lm_checkpoint>

which creates two contexts and replaces a select few encoded tokens to modify the underlying belief state.

Textworld

Begin by creating the full set of encoded proposition representations

python scripts/get_all_tw_facts.py \
    --data tw_data/simple_traces --gamefile tw_data/simple_games \
    --state_model_arch [bart|t5] \
    --probe_target belief_facts_pair \
    --state_model_path [None|pretrain|<path_to_lm_checkpoint>] \
    --out_file <path_to_prop_encodings>

Run the probe with

python scripts/probe_textworld.py \
    --arch [bart|t5] --data tw_data/simple_traces --gamefile tw_data/simple_games \
    --probe_target final.full_belief_facts_pair --encode_tgt_state NL.[bart|t5] \
    --localizer_type belief_facts_pair_[first|last|all] --probe_type 3linear_classify \
    --probe_agg_method avg --tgt_agg_method avg \
    --lm_save_path <path_to_lm_checkpoint> [--no_pretrain] \
    --ents_to_states_file <path_to_prop_encodings> \
    --eval_batchsize 256 --batchsize 32

For evaluation, add --eval_only --probe_save_path <path_to_probe_checkpoint>. This will save model predictions to a .jsonl file under the same directory as the probe checkpoint.

Add --control_input for No LM experiment.

Change --probe_target to init.full_belief_facts_pair to decode initial state.

For remap experiments, change --probe_target to final.full_belief_facts_pair.control_with_rooms.

For decoding from just one side of propositions, replace any instance of belief_facts_pair (in --probe_target and --localizer_type) with belief_facts_single and rerun both commands (first get the full proposition encodings, then run the probe).

Saves probe checkpoints under probe_models_textworld/*.

Print Metrics

Print full metrics (state EM, entity EM, subdivided by relations vs. propositions, etc.) using scripts/print_metrics.py.

python scripts/print_metrics.py \
    --arch [bart|t5] --domain [alchemy|textworld] \
    --pred_files <path_to_model_predictions_1>,<path_to_model_predictions_2>,<path_to_model_predictions_3>,... \
    [--use_remap_domain --remap_fn <path_to_remap_model_predictions>] \
    [--single_side_probe]
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022