ESL: Event-based Structured Light

Related tags

Deep LearningESL
Overview

ESL: Event-based Structured Light

Video (click on the image)

ESL: Event-based Structured Light

This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Muglikar, Guillermo Gallego, and Davide Scaramuzza.

Citation

A pdf of the paper is available here. If you use this code in an academic context, please cite the following work:

@InProceedings{Muglikar213DV,
  author = {Manasi Muglikar and Guillermo Gallego and Davide Scaramuzza},
  title = {ESL: Event-based Structured Light},
  booktitle = {{IEEE} International Conference on 3D Vision.(3DV)},
  month = {Dec},
  year = {2021}
}

Installation

 conda create -y -n ESL python=3.
 conda activate ESL
 conda install numba
 conda install -y -c anaconda numpy scipy
 conda install -y -c conda-forge h5py opencv tqdm matplotlib pyyaml pylops
 conda install -c open3d-admin -c conda-forge open3d

Data pre-processing

The recordings are available in numpy file format here. You can downlaoad the city_of_lights events file from here. Please unzip it and ensure the data is organized as follows:

-dataset
  calib.yaml
  -city_of_lights/
    -scans_np/
      -cam_ts00000.npy
      .
      .
      .
      -cam_ts00060.npy

The numpy file refers to the camera time map for each projector scan. The time map is normalized in the range [0, 1]. The time map for the city_of_lights looks as follows:

The calibration file for our setup, data/calib.yaml, follows the OpenCV yaml format.

Depth computation

To compute depth from the numpy files use the script below:

    python python/compute_depth.py -object_dir=dataset/static/city_of_lights/ -calib=dataset/calib.yaml -num_scans 1

The estimated depth will be saved as numpy files in the depth_dir/esl_dir subfolder of the dataset directory. The estimated depth for the city_of_lights dataset can be visualized using the visualization script visualize_depth.py:

Evaluation

We evaluate the performance for static sequences using two metrics with respect to ground truth: root mean square error (RMSE) and Fill-Rate (i.e., completion).

python python/evaluate.py -object_dir=dataset/static/city_of_lights

The output should look as follows:

Average scene depth:  105.47189659236103
============================Stats=============================
========== ESL stats ==============
Fill rate: 0.9178120881189983
RMSE: 1.160292387864739
=======================================================================

Additional resources on Event Cameras

Owner
Robotics and Perception Group
Robotics and Perception Group
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022