ESL: Event-based Structured Light

Related tags

Deep LearningESL
Overview

ESL: Event-based Structured Light

Video (click on the image)

ESL: Event-based Structured Light

This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Muglikar, Guillermo Gallego, and Davide Scaramuzza.

Citation

A pdf of the paper is available here. If you use this code in an academic context, please cite the following work:

@InProceedings{Muglikar213DV,
  author = {Manasi Muglikar and Guillermo Gallego and Davide Scaramuzza},
  title = {ESL: Event-based Structured Light},
  booktitle = {{IEEE} International Conference on 3D Vision.(3DV)},
  month = {Dec},
  year = {2021}
}

Installation

 conda create -y -n ESL python=3.
 conda activate ESL
 conda install numba
 conda install -y -c anaconda numpy scipy
 conda install -y -c conda-forge h5py opencv tqdm matplotlib pyyaml pylops
 conda install -c open3d-admin -c conda-forge open3d

Data pre-processing

The recordings are available in numpy file format here. You can downlaoad the city_of_lights events file from here. Please unzip it and ensure the data is organized as follows:

-dataset
  calib.yaml
  -city_of_lights/
    -scans_np/
      -cam_ts00000.npy
      .
      .
      .
      -cam_ts00060.npy

The numpy file refers to the camera time map for each projector scan. The time map is normalized in the range [0, 1]. The time map for the city_of_lights looks as follows:

The calibration file for our setup, data/calib.yaml, follows the OpenCV yaml format.

Depth computation

To compute depth from the numpy files use the script below:

    python python/compute_depth.py -object_dir=dataset/static/city_of_lights/ -calib=dataset/calib.yaml -num_scans 1

The estimated depth will be saved as numpy files in the depth_dir/esl_dir subfolder of the dataset directory. The estimated depth for the city_of_lights dataset can be visualized using the visualization script visualize_depth.py:

Evaluation

We evaluate the performance for static sequences using two metrics with respect to ground truth: root mean square error (RMSE) and Fill-Rate (i.e., completion).

python python/evaluate.py -object_dir=dataset/static/city_of_lights

The output should look as follows:

Average scene depth:  105.47189659236103
============================Stats=============================
========== ESL stats ==============
Fill rate: 0.9178120881189983
RMSE: 1.160292387864739
=======================================================================

Additional resources on Event Cameras

Owner
Robotics and Perception Group
Robotics and Perception Group
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
202 Jan 06, 2023
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022