ESL: Event-based Structured Light

Related tags

Deep LearningESL
Overview

ESL: Event-based Structured Light

Video (click on the image)

ESL: Event-based Structured Light

This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Muglikar, Guillermo Gallego, and Davide Scaramuzza.

Citation

A pdf of the paper is available here. If you use this code in an academic context, please cite the following work:

@InProceedings{Muglikar213DV,
  author = {Manasi Muglikar and Guillermo Gallego and Davide Scaramuzza},
  title = {ESL: Event-based Structured Light},
  booktitle = {{IEEE} International Conference on 3D Vision.(3DV)},
  month = {Dec},
  year = {2021}
}

Installation

 conda create -y -n ESL python=3.
 conda activate ESL
 conda install numba
 conda install -y -c anaconda numpy scipy
 conda install -y -c conda-forge h5py opencv tqdm matplotlib pyyaml pylops
 conda install -c open3d-admin -c conda-forge open3d

Data pre-processing

The recordings are available in numpy file format here. You can downlaoad the city_of_lights events file from here. Please unzip it and ensure the data is organized as follows:

-dataset
  calib.yaml
  -city_of_lights/
    -scans_np/
      -cam_ts00000.npy
      .
      .
      .
      -cam_ts00060.npy

The numpy file refers to the camera time map for each projector scan. The time map is normalized in the range [0, 1]. The time map for the city_of_lights looks as follows:

The calibration file for our setup, data/calib.yaml, follows the OpenCV yaml format.

Depth computation

To compute depth from the numpy files use the script below:

    python python/compute_depth.py -object_dir=dataset/static/city_of_lights/ -calib=dataset/calib.yaml -num_scans 1

The estimated depth will be saved as numpy files in the depth_dir/esl_dir subfolder of the dataset directory. The estimated depth for the city_of_lights dataset can be visualized using the visualization script visualize_depth.py:

Evaluation

We evaluate the performance for static sequences using two metrics with respect to ground truth: root mean square error (RMSE) and Fill-Rate (i.e., completion).

python python/evaluate.py -object_dir=dataset/static/city_of_lights

The output should look as follows:

Average scene depth:  105.47189659236103
============================Stats=============================
========== ESL stats ==============
Fill rate: 0.9178120881189983
RMSE: 1.160292387864739
=======================================================================

Additional resources on Event Cameras

Owner
Robotics and Perception Group
Robotics and Perception Group
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021